نتایج جستجو برای: experimental autoimmune encephalomyelitis
تعداد نتایج: 766438 فیلتر نتایج به سال:
The TNF-related apoptosis-inducing ligand (TRAIL) has well-described anti-inflammatory effects in models of autoimmune disease, including experimental autoimmune encephalomyelitis (EAE). In this issue of Neuron, Aktas, Smorodchenko, and colleagues present evidence that TRAIL exerts anti-inflammatory effects, but also induces neuronal apoptosis, in EAE. This report poses the therapeutic challeng...
Experimental autoimmune encephalomyelitis (EAE) is one of the best-documented animal models of autoimmune disease. We examined the role of CD8+CD122+ regulatory T cells, which we previously identified as naturally occurring regulatory T cells that effectively regulate CD8+ T cells, in EAE. Depletion of CD8+CD122+ regulatory T cells by in vivo administration of anti-CD122 mAb resulted in persist...
Neuroendocrine-immune interactions are thought to be important in determining susceptibility to autoimmune disease. Animal studies have revealed that differences in susceptibility to experimental autoimmune encephalomyelitis (EAE) are related to reactivity in the hypothalamo-pituitary-adrenal axis. It is known that there is a close relation between neuroendocrine parameters and behavioral chara...
CD8+ T cell depletion renders CD28-deficient mice susceptible to experimental autoimmune encephalomyelitis (EAE). In addition, CD8-/-CD28-/- double-knockout mice are susceptible to EAE. These findings suggest a role for CD8+ T cells in the resistance of CD28-deficient mice to disease. Adoptive transfer of CD8+CD28- T cells into CD8-/- mice results in significant suppression of disease, while CD...
Mice deficient in interleukin (IL)-2 production or the IL-2 receptor alpha or beta chains develop a lethal autoimmune syndrome. CD4(+) regulatory T cells have been shown to prevent autoimmune diseases, allograft rejection, and to down-regulate antibody responses against foreign antigens. To assess the role of IL-2 in the generation and function of regulatory T cells, we transferred CD4(+) T cel...
Immune regulation of autoimmune disease can function at two sites: at the secondary lymphoid organs or in the target organ itself. In this study, we investigated the natural resolution of autoimmune pathology within the CNS using murine experimental autoimmune encephalomyelitis (EAE). Recovery correlates with the accumulation of IL-10-producing CD4+CD25+ T cells within the CNS. These CD4+CD25+ ...
A strong association exists between mutations at the IL2 receptor alpha chain (CD25) gene locus and susceptibility to a number of T cell driven autoimmune diseases. Interestingly, the presence of certain CD25 susceptibility alleles has been correlated with significantly increased levels of the soluble form of CD25 (sCD25) in the serum of patients. However, the functional consequences, if any, o...
Limiting multiple sclerosis related axonopathy by blocking Nogo receptor and CRMP-2 phosphorylation.
Multiple sclerosis involves demyelination and axonal degeneration of the central nervous system. The molecular mechanisms of axonal degeneration are relatively unexplored in both multiple sclerosis and its mouse model, experimental autoimmune encephalomyelitis. We previously reported that targeting the axonal growth inhibitor, Nogo-A, may protect against neurodegeneration in experimental autoim...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید