نتایج جستجو برای: electric load forecasting
تعداد نتایج: 324983 فیلتر نتایج به سال:
review and classification of electric load forecasting (lf) techniques based on artificial neuralnetworks (ann) is presented. a basic anns architectures used in lf reviewed. a wide range of annoriented applications for forecasting are given in the literature. these are classified into five groups:(1) anns in short-term lf, (2) anns in mid-term lf, (3) anns in long-term lf, (4) hybrid anns inlf,...
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
In this paper, we present Taguchi’s and rolling modeling methods of artificial neural network (ANN) for very-short-term electric demand forecasting (VSTEDF) from the consumers’ viewpoint. The rolling model is a metabolism technique that guarantees input data are always the most recent values. In ANN prediction, several factors that may influence the model should be well examined. Taguchi’s meth...
This paper presents a study of the influence of the accuracy of hourly load forecasting on the energy planning and operation of electric generation utilities. First, a k Nearest Neighbours (kNN) classification technique is proposed for hourly load forecasting. Then, obtained prediction errors are compared with those obtained results by using a M5’. Second, the obtained kNN-based load forecast i...
This paper presents a new combined method for the short-term load forecasting of electric power systems based on the Fuzzy c-means (FCM) clustering, particle swarm optimization (PSO) and support vector regression (SVR) techniques. The training samples used in this method are of the same data type as the learning samples in the forecasting process and selected by a fuzzy clustering technique acc...
This paper proposes a new method for load forecasting—the wavelet neural network model for daily load forecasting. The neural call function is basis of nonlinear wavelets. A wavelet network is composed by the wavelet basis function. The global optimum solution is got. We overcome the intrinsic defects of a artificial neural network that its learning speed is slow, its network structure is diffi...
Electric load forecasting plays an important role in electricity markets and power systems. Because electric load time series are complicated and nonlinear, it is very difficult to achieve a satisfactory forecasting accuracy. In this paper, a hybrid model, Wavelet Denoising-Extreme Learning Machine optimized by k-Nearest Neighbor Regression (EWKM), which combines k-Nearest Neighbor (KNN) and Ex...
Increasing environmental awareness and energy costs encourage the increase of the contribution of renewable energy sources (RES) to the energy supply of buildings. However, the integration of RES and energy storage systems introduces significant challenges for the energy management system (EMS) of complex building energy systems. An energy management strategy based on fixed control rules may fa...
Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...
This article describes the influence of the kind of membership function on the accuracy of fuzzy logic forecasting model in the local power system. Fuzzy logic approach overcomes some problems related to practical implementations of traditional modelling and forecasting methods. This qualitative method of load forecasting can incorporate imprecise and ambiguous information in reasoning. The com...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید