On any given compact manifold M with boundary ∂M , it is proved that the moduli space E of Einstein metrics on M , if non-empty, is a smooth, infinite dimensional Banach manifold, at least when π1(M,∂M) = 0. Thus, the Einstein moduli space is unobstructed. The usual Dirichlet and Neumann boundary maps to data on ∂M are smooth, but not Fredholm. Instead, one has natural mixed boundary-value prob...