نتایج جستجو برای: edge geodetic number
تعداد نتایج: 1265013 فیلتر نتایج به سال:
Let \(G=(V(G),E(G))\) be a simple graph. A set \(S \subseteq V(G)\) is strong edge geodetic if there exists an assignment of exactly one shortest path between each pair vertices from S, such that these paths cover all the edges E(G). The cardinality smallest number \(\mathrm{sg_e}(G)\) G. In this paper, problem studied on Cartesian product two paths. exact value computed for \(P_n \,\square \,P...
We introduce a new graph-theoretic concept in the area of network monitoring. In this area, one wishes to monitor vertices and/or edges (viewed as graph) order detect and prevent failures. Inspired by two notions studied literature (edge-geodetic sets distance-edge-monitoring sets), we define notion monitoring edge-geodetic set (MEG-set for short) graph G an $$S\subseteq V(G)$$ (that is, every ...
A edge 2-rainbow dominating function (E2RDF) of a graph G is a function f from the edge set E(G) to the set of all subsets of the set {1,2} such that for any edge.......................
let $g$ be a graph and $chi^{prime}_{aa}(g)$ denotes the minimum number of colors required for an acyclic edge coloring of $g$ in which no two adjacent vertices are incident to edges colored with the same set of colors. we prove a general bound for $chi^{prime}_{aa}(gsquare h)$ for any two graphs $g$ and $h$. we also determine exact value of this parameter for the cartesian product of ...
Let G be an undirected graph with vertex and edge sets V (G) E(G), respectively. A subset S of vertices is a geodetic hop dominating set if it both set. The domination number G, γhg(G), the minimum cardinality among all in G. Geodetic resulting from some binary operations have been characterized. These characterizations used to determine tight bounds for each graphs considered.
A vertex set D in graph G is called a geodetic set if all vertices of G are lying on some shortest u–v path of G, where u, v 2 D. The geodetic number of a graph G is the minimum cardinality among all geodetic sets. A subset S of a geodetic set D is called a forcing subset of D if D is the unique geodetic set containing S. The forcing geodetic number of D is the minimum cardinality of a forcing ...
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G. We prove that it is NP complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore...
A set S of vertices of a graph G is a geodetic set if every vertex of G lies in at least one interval between the vertices of S. The size of a minimum geodetic set in G is the geodetic number of G. Upper bounds for the geodetic number of Cartesian product graphs are proved and for several classes exact values are obtained. It is proved that many metrically defined sets in Cartesian products hav...
For two vertices u and v of a graph G, the set I(u, v) consists of all vertices lying on some u − v geodesic in G. If S is a set of vertices of G, then I(S) is the union of all sets I(u, v) for u, v ∈ S. A set S is a geodetic set if I(S) = V (G). A minimum geodetic set is a geodetic set of minimum cardinality and this cardinality is the geodetic number g(G). A subset T of a minimum geodetic set...
A subset S of vertices in a graph G is called a geodetic set if every vertex not in S lies on a shortest path between two vertices from S. A subset D of vertices in G is called dominating set if every vertex not in D has at least one neighbor in D. A geodetic dominating set S is both a geodetic and a dominating set. The geodetic (domination, geodetic domination) number g(G)(γ(G), γg(G)) of G is...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید