Let $R$ be a commutative ring and $M$ an $R$-module. A submodule $N$ of is called d-submodule $($resp., fd-submodule$)$ if $\ann_R(m)\subseteq \ann_R(m')$ $\ann_R(F)\subseteq \ann_R(m'))$ for some $m\in N$ finite subset $F\subseteq N)$ $m'\in M$ implies that N.$ Many examples, characterizations, properties these submodules are given. Moreover, we use them to characterize modules satisfying Prop...