نتایج جستجو برای: dose enhancement factor
تعداد نتایج: 1235773 فیلتر نتایج به سال:
Background: New treatment modali es are developed with the aim of escala ng tumor absorbed dose and simultaneously sparing the normal structures. The use of nanotechnology in cancer treatment offers some possibili es including destroying cancer tumors with minimal damage to healthy ssues. Zinc Oxide nanopar cles (ZnO NPs) are wide band gap semiconductors and seem to have a good effect on increa...
Background: Normoxic type MAGICA gel dosimeters are established for dose quantification in three dimensions for radiotherapy. Objective(s): The ability of MAGICA polymer gel was assessed by experimental measurements method for studying the effect of gold nanoparticles (GNPs) in dose enhancement under the external 18MV radiotherapy practices. <...
Objective(s): Taking advantage of high atomic number of gold nanoparticles (GNPs) in radiation dose absorbing, many in vitro and in vivo studies have been carried out on using them as radio-sensitizer. In spite of noticeable dose enhancement by GNPs at keV energies, using this energy range for radiotherapy of deep-seated tumors is outdated. The aim of the present work was to examine the effect ...
with the advancement of nanotechnology, high-atomic materials such as gold nanoparticles can be used to increase the amount of absorbed doses and use this property to eliminate cancer cells. In this study, the dose enhancement factor (DEF) derived from different concentrations of gold nanoparticles was calculated to show an increase in absorbed dose from gold nanoparticles. At first, a tissue e...
Background: Gold nanoparticles (GNPs) have been shown as a good radiosensitizer. In combination with radiotherapy, several studies with orthovoltage X-rays have shown considerable dose enhancement effects. This paper reports the dose enhancement factor (DEF) due to GNPs in 18 megavoltage (MV) beams. Materials and Methods: Different geometrical 50-nm GNPs configurations at a concentrati...
Objective of the study: To explore the potential for therapeutic gain with gold nanoparticles in arteriovenous malformation radiosurgery based on their interaction with photons and protons. Study methods: Radiation dose enhancement resulting from the interaction of gold nanoparticles with irradiation ranging from kilovoltage to megavoltage photons and protons was researched in the literature. T...
Background: Gold nanoparticles (GNPs) are among the most promising radiosensitive materials in radiotherapy. Studying the effective sensitizing factors such as nanoparticle size, concentration, surface features, radiation energy and cell type can help to optimize the effect and possible clinical application of GNPs in radiation therapy. In this study, the radiation sensitive polymer gel was use...
this paper presents a three-dimensional numerical investigation carried out in turbulent forced convection in a tube with helical ribs. enhancement of heat transfer using helically corrugated tubes has beenstudied experimentally by many researchers but there exist a few published numerical analyses results. the paper also introduces the results of heat transfer and friction factor data for inco...
Ongoing controversy surrounds the adverse health effects of the use of depleted uranium (DU) munitions. The biological effects of gamma-radiation arise from the direct or indirect interaction between secondary electrons and the DNA of living cells. The probability of the absorption of X-rays and gamma-rays with energies below about 200 keV by particles of high atomic number is proportional to t...
INTRODUCTION Gold nanoparticles have been used as radiation dose enhancing materials in recent investigations. In the current study, dose enhancement effect of gold nanoparticles on tumor cells was evaluated using Monte Carlo (MC) simulation. METHODS We used MCNPX code for MC modeling in the current study. A water phantom and a tumor region with a size of 1×1×1 cm3 loaded with gold nanopartic...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید