نتایج جستجو برای: cyanide detoxification
تعداد نتایج: 18707 فیلتر نتایج به سال:
Biological treatments to degrade cyanide are a powerful technology for cyanide removal from industrial wastewaters. It has been previously demonstrated that the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 is able to use free cyanide and several metal-cyanide complexes as the sole nitrogen source. In this work, the strain CECT5344 has been used for detoxification of the differe...
Cyanide causes toxic effects by inhibiting cytochrome c oxidase, resulting in cellular hypoxia and cytotoxic anoxia, and can eventually lead to death. Cyanide exposure can be verified by direct analysis of cyanide concentrations or analyzing its metabolites, including thiocyanate (SCN(-)) and 2-amino-2-thiazoline-4-carboxylic acid (ATCA) in blood. To determine the behavior of these markers foll...
Nitric oxide (NO.) is a naturally occurring toxin that some organisms adaptively resist. In aerobic or anaerobic Escherichia coli, low levels of NO. exposure inactivated the NO.-sensitive citric acid cycle enzyme aconitase, and inactivation was more effective when the adaptive synthesis of NO.-defensive proteins was blocked with chloramphenicol. Protection of aconitase in aerobically grown E. c...
Chromobacterium violaceum is a Gram-negative bacterium found in a wide variety of tropical and subtropical ecosystems. The complete genome sequence of C. violaceum ATCC 12472 is now available, and it has considerable biotechnological potential for various applications, such as environmental detoxification, as well as medical and agricultural use. We examined the biotechnological potential of C....
The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue ...
In non-cyanogenic species, the main source of cyanide derives from ethylene and camalexin biosyntheses. In mitochondria, cyanide is a potent inhibitor of the cytochrome c oxidase and is metabolized by the β-cyanoalanine synthase CYS-C1, catalyzing the conversion of cysteine and cyanide to hydrogen sulfide and β-cyanoalanine. The hydrogen sulfide released also inhibits the cytochrome c oxidase a...
Cytoplasm of mammalian glial cells was reported to contain Gomori-positive cytoplasmic granulation (GPCG), whose biological role is unknown. The present study attempted to discover conditions facilitating GPCG formation and to elucidate their relationship with sulfane sulfur metabolism. To address these problems, we investigated in vivo the effect of both allyl disulfide (DADS), occurring in ga...
It is known that cyanide is converted to thiocyanate in the presence of the enzyme rhodanese. The enzyme is activated by sulfur transfer from an appropriate sulfur donor. The activated enzyme then binds cyanide and transfers the sulfur atom to cyanide to form thiocyanate. This project began as an exploration of the ability of disulfides to act as sulfur donors in the rhodanese-mediated detoxifi...
Cassava is a staple food for approximately 800 million people in tropical countries. The tuber which comprises mainly starch also contains high concentration cyanogenic glycosides which give rise to the hydrocyanic acid by enzymatic hydrolysis. The purpose this research therefore is to investigate the detoxification potential of fermentation, on the toxic (cyanide) content of cassava tuber. The...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید