نتایج جستجو برای: cordial index
تعداد نتایج: 396522 فیلتر نتایج به سال:
Raspberry juice cordial has a long anecdotal use in Australia for the prophylaxis and treatment of gastroenteritis in livestock, cage birds and humans. The antimicrobial properties of raspberry juice cordial, raspberry juice, raspberry leaf extract and a commercial brand of raspberry leaf tea were investigated against five human pathogenic bacteria and two fungi. Raspberry cordial and juice wer...
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...
Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
We describe the visual model of Cordial, a visual language integrating Object-Oriented and Constraint programming. The motivation behind Cordial is to provide a clear notion of objects deened implicitly by means of constraints. Cordial is a visual language having three distinguished features: (1) A hierarchical visual model, (2) an underlined visual formalism giving precise syntax and static se...
Hovey [Discrete Math. 93 (1991), 183–194] introduced simultaneous generalizations of harmonious and cordial labellings. He defines a graph G of vertex set V (G) and edge set E(G) to be k-cordial if there is a vertex labelling f from V (G) to Zk, the group of integers modulo k, so that when each edge xy is assigned the label (f(x) + f(y)) (mod k), the number of vertices (respectively, edges) lab...
In this paper we generalize the remainder cordial labeling, called $k$-remainder cordial labeling and investigate the $4$-remainder cordial labeling behavior of certain graphs.
In this paper we define total magic cordial (TMC) and total sequential cordial (TSC) labellings which are weaker versions of magic and simply sequential labellings of graphs. Based on these definitions we have given several results on TMC and TSC graphs.
let g be a (p, q) graph. let f : v (g) → {1, 2, . . . , k} be a map. for each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of g if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....
Let G be a graph with vertex set V and edge set E , and let A be an abelian group. A labeling f : V → A induces an edge labeling f ∗ : E → A defined by f (xy) = f (x) + f (y). For i ∈ A, let v f (i) = card{v ∈ V : f (v) = i} and e f (i) = card{e ∈ E : f (e) = i}. A labeling f is said to be A-friendly if |v f (i)−v f ( j)| ≤ 1 for all (i, j) ∈ A× A, and A-cordial if we also have |e f (i) − e f (...
Let G be a (p,q) graph and A be a group. We denote the order of an element $a in A $ by $o(a).$ Let $ f:V(G)rightarrow A$ be a function. For each edge $uv$ assign the label 1 if $(o(f(u)),o(f(v)))=1 $or $0$ otherwise. $f$ is called a group A Cordial labeling if $|v_f(a)-v_f(b)| leq 1$ and $|e_f(0)- e_f(1)|leq 1$, where $v_f(x)$ and $e_f(n)$ respectively denote the number of vertices labelled w...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید