نتایج جستجو برای: convex combination
تعداد نتایج: 431824 فیلتر نتایج به سال:
Minimum and maximum operators are two well-known t-norm and s-norm used frequently in fuzzy systems. In this paper, two different types of fuzzy inequalities are simultaneously studied where the convex combination of minimum and maximum operators is applied as the fuzzy relational composition. Some basic properties and theoretical aspects of the problem are derived and four necessary and suffi...
By investigating the extent to which variation in the coefficients of a convex combination of unitaries in a unital JB-algebra permits that combination to be expressed as convex combination of fewer unitaries of the same algebra, we generalise various results of R. V. Kadison and G. K. Pedersen. In the sequel, we shall give a couple of characterisations of JB-algebras of tsr
Let V be a real linear space. The functor ConvexComb(V ) yielding a set is defined by: (Def. 1) For every set L holds L ∈ ConvexComb(V ) iff L is a convex combination of V . Let V be a real linear space and let M be a non empty subset of V . The functor ConvexComb(M) yielding a set is defined as follows: (Def. 2) For every set L holds L ∈ ConvexComb(M) iff L is a convex combination of M . We no...
A cross-validation error estimator is obtained by repeatedly leaving out some data points, deriving classifiers on the remaining points, computing errors for these classifiers on the left-out points, and then averaging these errors. The 0.632 bootstrap estimator is obtained by averaging the errors of classifiers designed from points drawn with replacement and then taking a convex combination of...
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
let $g=(v,e)$ be a simple graph. a set $dsubseteq v$ is adominating set of $g$ if every vertex in $vsetminus d$ has atleast one neighbor in $d$. the distance $d_g(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$g$. an $(u,v)$-path of length $d_g(u,v)$ is called an$(u,v)$-geodesic. a set $xsubseteq v$ is convex in $g$ ifvertices from all $(a, b)$-geodesics belon...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید