نتایج جستجو برای: connected g

تعداد نتایج: 551215  

2013
Michael Bate Sebastian Herpel Gerhard Röhrle

In this paper we present an algorithm for determining whether a subgroup H of a non-connected reductive group G is G-completely reducible. The algorithm consists of a series of reductions; at each step, we perform operations involving connected groups, such as checking whether a certain subgroup of G is G-cr. This essentially reduces the problem of determining G-complete reducibility to the con...

Journal: :Ars Comb. 1999
Gregory Gutin

Given a digraph (an undirected graph, resp.) D and two positive integers f (x); g(x) for every x 2 V (D), a subgraph H of D is called a (g; f)-factor if g(x) d + H (x) = d ? H (x) f (x)(g(x) d H (x) f (x), resp.) for every x 2 V (D). If f (x) = g(x) = 1 for every x, then a connected (g; f)-factor is a hamiltonian cycle. The previous research related to the topic has been carried out either for ...

Journal: :transactions on combinatorics 2016
yaoping mao zhao wang ivan gutman

the wiener index $w(g)$ of a connected graph $g$‎ ‎is defined as $w(g)=sum_{u,vin v(g)}d_g(u,v)$‎ ‎where $d_g(u,v)$ is the distance between the vertices $u$ and $v$ of‎ ‎$g$‎. ‎for $ssubseteq v(g)$‎, ‎the {it steiner distance/} $d(s)$ of‎ ‎the vertices of $s$ is the minimum size of a connected subgraph of‎ ‎$g$ whose vertex set is $s$‎. ‎the {it $k$-th steiner wiener index/}‎ ‎$sw_k(g)$ of $g$ ...

Journal: :iranian journal of mathematical chemistry 2013
h. s. ramane a. b. ganagi h. b. walikar

the wiener index w(g) of a connected graph g is defined as the sum of the distances betweenall unordered pairs of vertices of g. the eccentricity of a vertex v in g is the distance to avertex farthest from v. in this paper we obtain the wiener index of a graph in terms ofeccentricities. further we extend these results to the self-centered graphs.

Journal: :iranian journal of mathematical chemistry 0
m. k. jamil abdus salam school of mathematical sciences, government college university, lahore, pakistan.

let $g$ be a connected graph, and let $d[g]$ denote the double graph of $g$. in this paper, we first derive closed-form formulas for different distance based topological indices for $d[g]$ in terms of that of $g$. finally, as illustration examples, for several special kind of graphs, such as, the complete graph, the path, the cycle, etc., the explicit formulas for some distance based topologica...

Journal: :transactions on combinatorics 2012
ivan gutman linhua feng guihai yu

let $g$ be a connected graph with vertex set $v(g)$‎. ‎the‎ ‎degree resistance distance of $g$ is defined as $d_r(g) = sum_{{u‎,‎v} subseteq v(g)} [d(u)+d(v)] r(u,v)$‎, ‎where $d(u)$ is the degree‎ ‎of vertex $u$‎, ‎and $r(u,v)$ denotes the resistance distance between‎ ‎$u$ and $v$‎. ‎in this paper‎, ‎we characterize $n$-vertex unicyclic‎ ‎graphs having minimum and second minimum degree resista...

For a graph G, the irregularity and total irregularity of G are defined as irr(G)=∑_(uv∈E(G))〖|d_G (u)-d_G (v)|〗 and irr_t (G)=1/2 ∑_(u,v∈V(G))〖|d_G (u)-d_G (v)|〗, respectively, where d_G (u) is the degree of vertex u. In this paper, we characterize all ‎connected Eulerian graphs with the second minimum irregularity, the second and third minimum total irregularity value, respectively.

‎The Steiner distance of a graph‎, ‎introduced by Chartrand‎, ‎Oellermann‎, ‎Tian and Zou in 1989‎, ‎is a natural generalization of the‎ ‎concept of classical graph distance‎. ‎For a connected graph $G$ of‎ ‎order at least $2$ and $Ssubseteq V(G)$‎, ‎the Steiner‎ ‎distance $d(S)$ among the vertices of $S$ is the minimum size among‎ ‎all connected subgraphs whose vertex sets contain $S$‎. ‎Let $...

The concept of average degree-eccentricity matrix ADE(G) of a connected graph $G$ is introduced. Some coefficients of the characteristic polynomial of ADE(G) are obtained, as well as a bound for the eigenvalues of ADE(G). We also introduce the average degree-eccentricity graph energy and establish bounds for it.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->