نتایج جستجو برای: co farthest points

تعداد نتایج: 591428  

In this paper, we consider Nearest points" and Farthestpoints" in normed linear spaces. For normed space (X; ∥:∥), the set W subset X,we dene Pg; Fg;Rg where g 2 W. We obtion results about on Pg; Fg;Rg. Wend new results on Chebyshev centers in normed spaces. In nally we deneremotal center in normed spaces.

2016
Sang Won Bae

In this paper, we investigate the L1 geodesic farthest neighbors in a simple polygon P , and address several fundamental problems related to farthest neighbors. Given a subset S ⊆ P , an L1 geodesic farthest neighbor of p ∈ P from S is one that maximizes the length of L1 shortest path from p in P . Our list of problems include: computing the diameter, radius, center, farthestneighbor Voronoi di...

Journal: :International Journal of Pure and Apllied Mathematics 2013

Journal: :Advances in Mathematics of Communications 2016

Journal: :Int. J. Math. Mathematical Sciences 2008
Shirin Hejazian Asadollah Niknam Sedigheh Shadkam Torbati

We study the farthest point mapping in a p-normed space X in virtue of subdifferential of rx sup{{x − z p : z ∈ M}, where M is a weakly sequentially compact subset of X. We show that the set of all points in X which have farthest point in M contains a dense G δ subset of X.

Journal: :Theor. Comput. Sci. 2001
Otfried Cheong Chan-Su Shin Antoine Vigneron

Let be a set of points in convex position in . The farthest-point Voronoi diagram of partitions into convex cells. We consider the intersection of the diagram with the boundary of the convex hull of . We give an algorithm that computes an implicit representation of in expected time. More precisely, we compute the combinatorial structure of , the coordinates of its vertices, and the equation of ...

2016
Eunjin Oh Luis Barba Hee-Kap Ahn

Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O((n + m) log logn)time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the boundary of a si...

Journal: :Inf. Process. Lett. 2006
Asish Mukhopadhyay Robert L. Scot Drysdale

In this paper, we propose an algorithm for computing the farthest-segment Voronoi diagram for the edges of a convex polygon and apply this to obtain an O(n logn) algorithm for the following proximity problem: Given a set P of n (>2) points in the plane, we have O(n2) implicitly defined segments on pairs of points. For each point p ∈ P , find a segment from this set of implicitly defined segment...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید