نتایج جستجو برای: co farthest points
تعداد نتایج: 591428 فیلتر نتایج به سال:
In this paper, we consider Nearest points" and Farthestpoints" in normed linear spaces. For normed space (X; ∥:∥), the set W subset X,we dene Pg; Fg;Rg where g 2 W. We obtion results about on Pg; Fg;Rg. Wend new results on Chebyshev centers in normed spaces. In nally we deneremotal center in normed spaces.
In this paper, we investigate the L1 geodesic farthest neighbors in a simple polygon P , and address several fundamental problems related to farthest neighbors. Given a subset S ⊆ P , an L1 geodesic farthest neighbor of p ∈ P from S is one that maximizes the length of L1 shortest path from p in P . Our list of problems include: computing the diameter, radius, center, farthestneighbor Voronoi di...
We study the farthest point mapping in a p-normed space X in virtue of subdifferential of rx sup{{x − z p : z ∈ M}, where M is a weakly sequentially compact subset of X. We show that the set of all points in X which have farthest point in M contains a dense G δ subset of X.
Let be a set of points in convex position in . The farthest-point Voronoi diagram of partitions into convex cells. We consider the intersection of the diagram with the boundary of the convex hull of . We give an algorithm that computes an implicit representation of in expected time. More precisely, we compute the combinatorial structure of , the coordinates of its vertices, and the equation of ...
Given a set of sites (points) in a simple polygon, the farthest-point geodesic Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an O((n + m) log logn)time algorithm to compute the farthest-point geodesic Voronoi diagram for m sites lying on the boundary of a si...
In this paper, we propose an algorithm for computing the farthest-segment Voronoi diagram for the edges of a convex polygon and apply this to obtain an O(n logn) algorithm for the following proximity problem: Given a set P of n (>2) points in the plane, we have O(n2) implicitly defined segments on pairs of points. For each point p ∈ P , find a segment from this set of implicitly defined segment...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید