We prove the existence of multiple solutions for following sixth-order $p(x)$-Kirchhoff-type problem: $-M(\int_\Omega \frac{1}{p(x)}|\nabla \Delta u|^{p(x)}dx)\Delta^3_{p(x)} u = \lambda f(x)|u|^{q(x)-2}u + g(x)|u|^{r(x)-2}u h(x) \ \mbox{on} \Omega$ and $ u=\Delta u=\Delta^2 u=0 \partial\Omega,$ where $\Omega \subset \mathbb{R}^N$ is a smooth bounded domain, $N > 3$, $\Delta_{p(x)}^3u \operator...