In their celebrated 1991 paper on the inverse eigenvalue problem for nonnegative matrices, Boyle and Handelman conjectured that if A is an (n+1)×(n+1) nonnegative matrix whose nonzero eigenvalues are: λ0 ≥ |λi|, i = 1, . . . , r, r ≤ n, then for all x ≥ λ0, (∗) r ∏ i=0 (x− λi) ≤ x − λ 0 . To date the status of this conjecture is that Ambikkumar and Drury (1997) showed that the conjecture is tru...