نتایج جستجو برای: boron nitride nanotube
تعداد نتایج: 44831 فیلتر نتایج به سال:
Molecular mechanics results show that a hexagonal boron nitride (h-BN) membrane can spontaneously assemble on the single-walled boron nitride nanotube (BNNT) in a scroll or helical manner, showing an interesting dependence on h-BN width. The size of BNNTs should meet the required conditions to guarantee self-assembly. Further analyses of energy components and structural geometry show that this ...
In this study interaction of phenothiazine sulfur dye with (5, 5) armchair open-end boron nitride nanotubes (BNNTs) in interaction (with a length of 7 Å) was investigated. The impacts of the estereoelectronic effect associated with donor-acceptor electron delocalizations, dipole-dipole interactions and total steric exchange energies on the structural and electronic properties and reactivity of ...
Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward aniline (C6H5NH2) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of aniline on the pristine nanotubes is a bout -19.03kcal/mol. But when nanotube has been doped with Si and Al ato...
Abstract: Electrical sensitivity of a boron nitride nanotube (BNNT) was examined toward ethyl acetylene (C4H6) molecule by using density functional theory (DFT) calculations at the B3LYP/6-31G (d) level, and it was found that the adsorption energy (Ead) of ethyl acetylene the pristine nanotubes is about -1.60kcal/mol. But when nanotube has been doped with Si an...
In this study interaction of phenothiazine sulfur dye with (5, 5) armchair open-end boron nitride nanotubes (BNNTs) in interaction (with a length of 7 Å) was investigated. The impacts of the estereoelectronic effect associated with donor-acceptor electron delocalizations, dipole-dipole interactions and total steric exchange energies on the structural and electronic properties and reactivity of ...
We have experimentally determined the elastic properties of an individual multi-wall boron nitride (BN) nanotube. From the thermal vibration amplitude of a cantilevered BN nanotube observed in a transmission electron microscope, we find the axial Young's modulus to be 1.22 ± 0.24 TPa, a value consistent with theoretical estimates. The observed Young's modulus exceeds that of all other known ins...
Molecular-level simulations are used to examine the suitability of boron-nitride single-walled nanotubes (SWNTs) as fluidflow conduits in the nano-valve applications based on a molecular-mono-layer functionalized silicon cantilever. The interaction between the constituent atoms in the nanotubes is modeled using the Universal Force Field inter-atomic potential. Key functional requirements (a lar...
Background & Aims: Drugs are highly active due to their many functional groups and can be easily destroyed by stomach acid and excreted before reaching target tissue. Thus, by encapsulating, a sheath is placed around drug to reduce reactivity of the drug due to stereo electronic resonance with nanotube and consequently drug stays longer in body. As a result, you can consume a smaller dose of dr...
in this article, the bending and free vibration analysis of functionally graded (fg) nanocomposites timoshenko beam model reinforced by single-walled boron nitride nanotube (swbnnt) using micro-mechanical approach embedded in an elastic medium is studied. the modified coupled stress (mcst) and nonlocal elasticity theories are developed to take into account the size-dependent effect. the mechani...
Spin polarized density functional theory has been used to investigate the structural stability and electronic properties of extrinsic and intrinsic defects in boron nitride nanotubes. Carbon substitutional defects under nitrogen rich and boron-rich growth conditions have the lowest heats of formation compared to boron and nitrogen antisites. Creating a defect reduces the band gap of the nanotub...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید