نتایج جستجو برای: bootstrap aggregating

تعداد نتایج: 18325  

2009
M. Arthur Munson Rich Caruana

We examine the mechanism by which feature selection improves the accuracy of supervised learning. An empirical bias/variance analysis as feature selection progresses indicates that the most accurate feature set corresponds to the best bias-variance trade-off point for the learning algorithm. Often, this is not the point separating relevant from irrelevant features, but where increasing variance...

2010
YANG Jianfeng

The process capability indices are widely used by quality professionals as an estimate of process capability. The lower confidence limits of PCIs are difficult to be estimated by parametric methods for some non-normal distributed processes. The non-parametric but computer intensive Bootstrap techniques are utilized for these cases. The Percentile-t Bootstrap (PTB) method is used to estimate the...

Journal: :Pattern Recognition Letters 2003
Nitesh V. Chawla Thomas E. Moore Lawrence O. Hall Kevin W. Bowyer W. Philip Kegelmeyer Clayton Springer

Bagging forms a committee of classifiers by bootstrap aggregation of training sets from a pool of training data. A simple alternative to bagging is to partition the data into disjoint subsets. Experiments with decision tree and neural network classifiers on various datasets show that, given the same size partitions and bags, disjoint partitions result in performance equivalent to, or better tha...

Journal: :CoRR 2011
Vladimir Nikulin

There is a growing interest in using a longitudinal observational databases to detect drug safety signal. In this paper we present a novel method, which we used online during the OMOP Cup. We consider homogeneous ensembling, which is based on random re-sampling (known, also, as bagging) as a main innovation compared to the previous publications in the related field. This study is based on a ver...

Journal: :Pattern Recognition 2003
Robert K. Bryll Ricardo Gutierrez-Osuna Francis K. H. Quek

We present attribute bagging (AB), a technique for improving the accuracy and stability of classi#er ensembles induced using random subsets of features. AB is a wrapper method that can be used with any learning algorithm. It establishes an appropriate attribute subset size and then randomly selects subsets of features, creating projections of the training set on which the ensemble classi#ers ar...

Journal: :CoRR 2017
Tien Thanh Nguyen Xuan Cuong Pham Alan Wee-Chung Liew Witold Pedrycz

In this study, we introduce a new approach to combine multi-classifiers in an ensemble system. Instead of using numeric membership values encountered in fixed combining rules, we construct interval membership values associated with each class prediction at the level of meta-data of observation by using concepts of information granules. In the proposed method, uncertainty (diversity) of findings...

2008
ERIC HILLEBRAND MARCELO C. MEDEIROS M. C. MEDEIROS

The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We propose bootstrap aggregation (bagging) as a means of imposing parameter restrictions. In this context, bagging results in a soft threshold as opposed to the hard threshold that is implied by a simple restricted estimation. We show anal...

2008
Lucelene Lopes Edson Emílio Scalabrin Paulo Fernandes

This paper compares the accuracy of combined classifiers in medical data bases to the same knowledge discovery techniques applied to generic data bases. Specifically, we apply Bagging and Boosting methods for 16 medical and 16 generic data bases and compare the accuracy results with a more traditional approach (C4.5 algorithm). Bagging and Boosting methods are applied using different numbers of...

2001
Pierre Geurts

In this paper, a dual perturb and combine algorithm is proposed which consists in producing the perturbed predictions at the prediction stage using only one model. To this end, the attribute vector of a test case is perturbed several times by an additive random noise, the model is applied to each of these perturbed vectors and the resulting predictions are aggregated. An analytical version of t...

2009
Tara McIntosh James R. Curran

Iterative bootstrapping algorithms are typically compared using a single set of handpicked seeds. However, we demonstrate that performance varies greatly depending on these seeds, and favourable seeds for one algorithm can perform very poorly with others, making comparisons unreliable. We exploit this wide variation with bagging, sampling from automatically extracted seeds to reduce semantic dr...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید