نتایج جستجو برای: bnnts fibers
تعداد نتایج: 70644 فیلتر نتایج به سال:
We have synthesized boron nitride nanotubes (BNNTs) in an arc in presence of boron and nitrogen species only, without transition metals. We find that BNNTs are often attached to pure boron nanoparticles, suggesting that root-growth is a likely mechanism for their formation. To gain further insight into this process we have studied key mechanisms for root growth of BNNTs on the surface of a liqu...
Selective growth of boron nitride nanotubes (BNNTs) was demonstrated by plasma-enhanced pulsed laser deposition (PE-PLD). Although PLD is a physical vapor deposition technique for the growth of boron nitride (BN) thin films, ion sputtering induced by the plasma can eliminate the formation of BN thin films and lead to the so-called total resputtering region, in which, a pure phase of BNNTs can b...
Effective growth of multiwalled boron nitride nanotubes (BNNTs) has been obtained by thermal chemical vapor deposition (CVD). This is achieved by a growth vapor trapping approach as guided by the theory of nucleation. Our results enable the growth of BNNTs in a conventional horizontal tube furnace within an hour at 1200 °C. We found that these BNNTs have an absorption band edge of 5.9 eV, appro...
Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stabi...
Bending manipulation and direct force measurements of ultrathin boron nitride nanotubes (BNNTs) were performed inside a transmission electron microscope. Our results demonstrate an obvious transition in mechanics of BNNTs when the external diameters of nanotubes are in the range of 10 nm or less. During in situ transmission electron microscopy bending tests, characteristic "hollow" ripple-like ...
Boron nitride nanotubes (BNNTs) have generated considerable interest within the scientific community by virtue of their unique physical properties, which can be exploited in the biomedical field. In the present in vitro study, we investigated the interactions of poly-l-lysine-coated BNNTs with C2C12 cells, as a model of muscle cells, in terms of cytocompatibility and BNNT internalization. The l...
Interactions of DNA oligomers with two categories of semiconducting nanostructureschalcogenide quantum dots (QDs) and boron nitride nanotubes (BNNTs)owing to their widespread presence in bioinspired processes are investigated using the first-principles density functional theory and continuum solvent model. The chalcogenide QDs interact strongly at their metal centers featuring electrostatic i...
The size of electronic devices becomes smaller and smaller and the utilized components and materials are subjected to complex environments including high temperatures, electrical current, mechanical stresses, and others. We need to evaluate the performance of these small-scale materials that are used in such devices. We have shown that these small-scale materials may suffer structural degradati...
Single-walled boron nitride nanotubes are chosen as model reactants, and (10,0) and (6,6) are chosen as representatives of armchair and zigzag nanotubes, respectively, to study the interaction of carbenes of the type :CX2. It is found that, contrary to the case of carbon nanotubes, boron nitride tubes, particularly armchair BNNTs, do not show a propensity for cyclopropane ring formation. The SW...
Understanding the coupling between one-dimensional (1D) materials and their protective is essential for developing nanodevices. Herein, we investigate effect of size, chirality, type nanotubes [such as carbon/boron nitride (CNTs/BNNTs)] on atomic electronic structures confined Te chains using density functional theory. We find that optimal configurations in CNTs/BNNTs depend strongly size but w...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید