نتایج جستجو برای: biocathode
تعداد نتایج: 177 فیلتر نتایج به سال:
Oxygen reducing biocathodes were formed from sludge under constant polarization at -0.2 and +0.4V/SCE. Under chronoamperometry at pH10.3 ± 0.3, current densities of 0.21 ± 0.03 and 0.12 ± 0.01 Am(-2) were displayed at -0.2V/SCE by the biocathodes formed at -0.2 and 0.4V/SCE, respectively. Voltammetry revealed similar general characteristics for all biocathodes and higher diffusion-limited curre...
Microbial biofilms that form on metallic surfaces in natural seawater are known to generate efficient oxygen-reducing cathodes. The microbial catalysis of oxygen reduction is a major mechanism of corrosion in marine aerobic environments; it can also be exploited to develop biocathodes for microbial fuel cells. In the latter case, seawater biocathodes have the great advantage of operating in hig...
Enzymatic biofuel cells have attracted much attention for their potential to directly use biochemical energy sources in living organisms such as animals, fruits, etc. However, generally natural organisms have a skin, and the oxygen concentration in the organisms is lower than that of biofuels like sugars. Here, we fabricated a miniature assembly that consists of a needle bioanode for accessing ...
Biocathodes provide a stable electron source to drive reduction reactions in electrotrophic microbial electrochemical systems. Electroautotrophic biocathode communities may be more robust than monocultures in environmentally relevant settings, but some members are not easily cultivated outside the electrode environment. We previously used metagenomics and metaproteomics to propose a pathway for...
Section 2 FT-IR spectra of the NG/AuNPs, NG/AuNPs/FDH and NG/AuNPs/laccase Section 3 Control experiments at different electrode. Section 4 CV of the formic acid oxidation Section 5 Polarization curves of the NG/AuNPs/FDH electrode and G/AuNPs/FDH electrode Section 6 Crossover between the bioanode and biocathode Section 7 Dependence of power density on the formic acid concentration for EBFC Sect...
Microbial fuel cell (MFC) with nitrite as an electron acceptor in cathode provided a new technology for nitrogen removal and electricity production simultaneously. The influences of influent nitrite concentration and external resistance on the performance of denitrifying MFC were investigated. The optimal effectiveness were obtained with the maximum total nitrogen (TN) removal rate of 54.80 ± 0...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید