نتایج جستجو برای: bernstein polynomial
تعداد نتایج: 101459 فیلتر نتایج به سال:
A symmetric basis of trigonometric polynomial space is presented. Based on the basis, symmetric trigonometric polynomial approximants like Bernstein polynomials are constructed. Two kinds of nodes are given to show that the trigonometric polynomial sequence is uniformly convergent. The convergence of the derivative of the trigonometric polynomials is shown. Trigonometric quasi-interpolants of r...
Bernstein polynomials on a simplex V are considered. The expansion of a given polynomial p into these polynomials provides bounds for the range of p over V . Bounds for the range of a rational function over V can easily obtained from the Bernstein expansions of the numerator and denominator polynomials of this function. In this paper it is shown that these bounds converge monotonically and line...
This paper estimates upper and lower bounds for the approximation rates of iterated Boolean sums of multivariate Bernstein polynomials. Both direct and inverse inequalities for the approximation rate are established in terms of a certain K -functional. From these estimates, one can also determine the class of functions yielding optimal approximations to the iterated Boolean sums. c © 2008 Elsev...
A simple method is presented by which tight bounds on the range of a multivariate rational function over a box can be computed. The approach relies on the expansion of the numerator and denominator polynomials into Bernstein polynomials.
Recently, Z. Ditzian gave an interesting direct estimate for Bernstein polynomials. In this paper we give direct and inverse results of this type for linear combinations of Bernstein polynomials.
In this short note, we establish the uniform integrability and pointwise convergence of an (unbounded) family of polynomials on the unit interval that arises in work on statistical density estimation using Bernstein polynomials. These results are proved by first establishing/generalizing some combinatorial and probability inequalities that rely on a new family of completely monotonic functions.
We prove weighted Markov–Bernstein inequalities of the form
In this article, a formulation of a point-collocation method in which the unknown function is approximated using global expansion in tensor product Bernstein polynomial basis is presented. Bernstein polynomials used in this study are defined over general interval [a, b]. Method incorporates several ideas that enable higher numerical efficiency compared to Bernstein polynomial methods that have ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید