نتایج جستجو برای: augmented eccentric connectivity index
تعداد نتایج: 516957 فیلتر نتایج به سال:
Let G be a graph. In this paper, we study the eccentric connectivity index, the new version of the second Zagreb index and the forth geometric–arithmetic index.. The basic properties of these novel graph descriptors and some inequalities for them are established.
In this paper, we calculate the eccentric connectivity index and the eccentricity sequence of two infinite classes of fullerenes with 50 + 10k and 60 + 12k (k in N) carbon atoms.
Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...
If G is a connected graph with vertex set V (G), then the eccentric connectivity index of G, denoted by ξc(G), is defined as ∑ v∈V (G) deg(v)ec(v), where deg(v) is the degree of a vertex v and ec(v) is its eccentricity. Morgan et al. [5] investigated the eccentric connectivity index of trees. In this paper, we investigate the eccentric connectivity index of unicyclic graphs. Upper bound is obta...
The eccentric connectivity index based on degree and eccentricity of the vertices of a graph is a widely used graph invariant in mathematics. In this paper we present the explicit generalized expressions for the eccentric connectivity index and polynomial of the thorn graphs, and then consider some particular cases.
We consider four classes of graphs arising from a given graph via different types of edge subdivisions. We present explicit formulas expressing their eccentric connectivity index in terms of the eccentric connectivity index of the original graph and some auxiliary invariants.
If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.
Let G be a connected simple (molecular) graph. The distance d(u, v) between two vertices u and v of G is equal to the length of a shortest path that connects u and v. In this paper we compute some distance based topological indices of H-Phenylenic nanotorus. At first we obtain an exact formula for the Wiener index. As application we calculate the Schultz index and modified Schultz index of this...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید