نتایج جستجو برای: anfis fuzzy c means clustering method

تعداد نتایج: 2947989  

H. Ghoudjehbaklou and H. Seifi, M.E. Hamedani Golshan,

Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...

H. Ghoudjehbaklou and H. Seifi, M.E. Hamedani Golshan,

Finding the collapse susceptible portion of a power system is one of the purposes of voltage stability analysis. This part which is a voltage control area is called the voltage weak area. Determining the weak area and adjecent voltage control areas has special importance in the improvement of voltage stability. Designing an on-line corrective control requires the voltage weak area to be determi...

Journal: :Scientia Iranica 2022

Accurate energy production forecasting is critical when planning for the economic development of a country. A deep learning approach based on Long Short-Term Memory (LSTM) to forecast one-day-ahead from run-of-river hydroelectric power plants in Turkey was introduced present study. In addition LSTM network, three different data-driven methods, namely, adaptive neuro-fuzzy inference system (ANFI...

1998
Sadaaki Miyamoto

Principal methods in nonhierarchical and hierarchical fuzzy clustering are overviewed. In particular, the method of fuzzy c-means is focused upon and recent algorithms in fuzzy c-means are described. It is shown that the concept of regularization plays an important role in the fuzzy c-means. Classification functions induced from fuzzy clustering are discussed and variations of the standard fuzz...

2009
Binu Thomas

In data mining, the conventional clustering algorithms have difficulties in handling the challenges posed by the collection of natural data which is often vague and uncertain. Fuzzy clustering methods have the potential to manage such situations efficiently. This paper introduces the limitations of conventional clustering methods through k-means and fuzzy c-means clustering and demonstrates the...

Journal: :IEICE Transactions 2005
Ilseok Han Wanyoung Kim Hagbae Kim

This paper presents an optimal load balancing algorithm based on both of the ANFIS (Adaptive Neuro-Fuzzy Inference System) modeling and the FIS (Fuzzy Inference System) for the local status of real servers. It also shows the substantial benefits such as the removal of loadscheduling overhead, QoS (Quality of Service) provisioning and providing highly available servers, provided by the suggested...

2014
Samarjit Das Hemanta K. Baruah

Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like th...

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید