نتایج جستجو برای: acyclic chromatic index
تعداد نتایج: 415987 فیلتر نتایج به سال:
A proper edge-colouring with the property that every cycle contains edges of at least three distinct colours is called an acyclic edge-colouring. The acyclic chromatic index of a graph G, denoted χa(G), is the minimum k such that G admits an acyclic edge-colouring with k colours. We conjecture that if G is planar and ∆(G) is large enough then χa(G) = ∆(G). We settle this conjecture for planar g...
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). A graph G is called fully subdivided if it is obtained from another graph H by replacing every edge by a path of length at least two. Fully subdi...
We prove that, the acyclic chromatic index a′(G) ≤ 6∆ for all graphs with girth at least 9. We extend the same method to obtain a bound of 4.52∆ with the girth requirement g ≥ 220. We also obtain a relationship between g and a′(G).
An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two neighbors in G are assigned the same color and (ii) no bicolored cycle can exist in G. The acyclic chromatic number of G is the least number of colors necessary to acyclically color G. In this paper, we show that any graph of maximum degree 5 has acyclic chromatic number at most 9, and we give a linear time alg...
Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number k is at most k2. We prove that this bound is tight for k ≥ 3. We also consider acyclic improper colorings on planar graphs and partial ktrees. Finally, we show that some improper and/or acyclic colorings are NP-complete on restricted subclasses of planar graphs, in particular acyclic 3-colorabi...
We give upper bounds for the generalised acyclic chromatic number and generalised acyclic edge chromatic number of graphs with maximum degree d, as a function of d. We also produce examples of graphs where these bounds are of the correct order.
A proper edge coloring of a graph G is called acyclic if there is no 2-colored cycle in G. The acyclic edge chromatic number of G is the least number of colors in an acyclic edge coloring of G. In this paper, it is proved that the acyclic edge chromatic number of a planar graph G is at most ∆(G)+2 if G contains no i-cycles, 4≤ i≤ 8, or any two 3-cycles are not incident with a common vertex and ...
An acyclic coloring of a graph G is a coloring of its vertices such that:(i) no two neighbors in G are assigned the same color and (ii) no bicolored cycle can exist in G. The acyclic chromatic number of G is the least number of colors necessary to acyclically color G. Recently it has been proved that any graph of maximum degree 5 has an acyclic chromatic number at most 8. In this paper we prese...
An acyclic coloring of a graph is a proper vertex coloring such that the union of any two color classes induces a disjoint collection of trees. The more restricted notion of star coloring requires that the union of any two color classes induces a disjoint collection of stars. We prove that every acyclic coloring of a cograph is also a star coloring and give a linear-time algorithm for finding a...
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G = (V,E). For a family F of graphs, the acyclic chromatic number of F , denoted by a(F), is defined as the maximum a(G) over all the graphs G ∈ F . In this pape...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید