نتایج جستجو برای: abiotic stresses
تعداد نتایج: 53215 فیلتر نتایج به سال:
Trichoderma harzianum is one of the most beneficial microorganisms applied on diverse crops against biotic and abiotic stresses and acts also as a plant growth-promoting fungus. Here, we report the genome of T. harzianum B97, originating from a French agricultural soil and used as a biofertilizer that can tolerate abiotic stresses.
Abiotic stresses such as high temperature, salinity, and drought adversely affect the survival, growth, and reproduction of plants. Plants respond to such unfavorable changes through developmental, physiological, and biochemical ways, and these responses require expression of stress-responsive genes, which are regulated by a network of transcription factors (TFs), including heat stress transcri...
Abiotic stresses such as drought, salinity, and adverse temperatures are major limiting factors for plant growth and reproduction. Plant responses to these stresses are coordinated by arrays of regulatory networks including the induction of endogenous abscisic acid (ABA), a well documented phytohormone for stress responses. However, whether or how these abiotic stresses affect the endogenous bi...
Abiotic stresses are the foremost limiting factors for agricultural productivity. Crop plants need to cope up adverse external pressure created by environmental and edaphic conditions with their intrinsic biological mechanisms, failing which their growth, development, and productivity suffer. Microorganisms, the most natural inhabitants of diverse environments exhibit enormous metabolic capabil...
Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reduction...
The relationship between abiotic stress, nitric oxide (NO) and Hydrogen peroxide (H2O2) is a challenging one. It is now clear that H2O2 and NO function as signalling molecules in plants. A wide range of abiotic stresses results in H2O2 generation, from a variety of sources and it has many essential roles in plant metabolism but at the same time, accumulation related to virtually any environment...
Contemporary agriculture is characterized by a highly intensive nature and productivity [...]
Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and sa...
Ethylene is essential for many developmental processes and a key mediator of biotic and abiotic stress responses in plants. The ethylene signaling and response pathway includes Ethylene Response Factors (ERFs), which belong to the transcription factor family APETALA2/ERF. It is well known that ERFs regulate molecular response to pathogen attack by binding to sequences containing AGCCGCC motifs ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید