نتایج جستجو برای: abel and volterra integral equations
تعداد نتایج: 16903266 فیلتر نتایج به سال:
In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...
in this paper, the two-dimensional triangular orthogonal functions (2d-tfs) are applied for solving a class of nonlinear two-dimensional volterra integral equations. 2d-tfs method transforms these integral equations into a system of linear algebraic equations. the high accuracy of this method is verified through a numerical example and comparison of the results with the other numerical methods.
In this paper, to solve a linear one-dimensional Volterra integral equation of the second kind. For this purpose using the equation form, we have defined a linear transformation and by using it's conjugate and reproducing kernel functions, we obtain a basis for the functions space.Then we obtain the solution of integral equation in terms of the basis functions. The examples presented in this ...
in this paper we investigate the existence and uniqueness for volterra-fredholm type integral equations and extension of this type of integral equations. the result is obtained by using the coupled fixed point theorems in the framework of banach space $ x=c([a,b],mathbb{r})$. finally, we give an example to illustrate the applications of our results.
In this paper, a new simple direct method to solve nonlinear Fredholm-Volterra integral equations is presented. By using Block-pulse (BP) functions, their operational matrices and Taylor expansion a nonlinear Fredholm-Volterra integral equation converts to a nonlinear system. Some numerical examples illustrate accuracy and reliability of our solutions. Also, effect of noise shows our solutions ...
In this paper, interval Legendre wavelet method is investigated to approximated the solution of the interval Volterra-Fredholm-Hammerstein integral equation. The shifted interval Legendre polynomials are introduced and based on interval Legendre wavelet method is defined. The existence and uniqueness theorem for the interval Volterra-Fredholm-Hammerstein integral equations is proved. Some examp...
Here a posteriori error estimate for the numerical solution of nonlinear Voltena- Hammerstein equations is given. We present an error upper bound for nonlinear Voltena-Hammastein integral equations, in which the form of nonlinearity is algebraic and develop a posteriori error estimate for the recently proposed method of Brunner for these problems (the implicitly linear collocation method)...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید