نتایج جستجو برای: گراف های مجاور
تعداد نتایج: 479467 فیلتر نتایج به سال:
چکیده فرض کنید g گروه غیرآبلی و z(g) نمایانگر مرکز آن باشد. به گروه فوق گراف ?_g را به صورتی نسبت می دهیم که g?z(g) مجموعه ی رئوس گراف باشد و هم چنین دو عضو y,x با هم مجاور باشند، اگر و تنها اگر xy?yx. این گراف را گراف ناجابه جایی گروه می نامند. فرض کنید a یک گراف باشد. زیرمجموعه ی x از رئوس گراف a را یک خوشه می نامیم هرگاه هر دو رأس x به هم مجاور باشند. اندازه ی بزرگ ترین خوشه ی a را با ?(a)...
مجموعه d از راسهادر یک گراف g ،مجموعه احاطه گر است اگر هر راس ازg که درd نباشد با حداقل یک راس ازd مجاور باشد.می نیمم اندازه یک مجموعه احاطه گر در g،عدد احاطه ای gنامیده می شود. عدد بانداژاز گراف ناتهی g،کمترین تعداد یالهایی از eاست بطوریکه عدد احاطهای g-e از عدد احاطه ای g بزرگتر باشد.
رنگ آمیزی گراف فازی یکی از مهم ترین مسائل بهینه سازی ترکیبیاتی است. بسیاری از مثال های عملی مانند جدول زمانی، خوشه بندی شبکه ها و کنترل نور ترافیک را می توان به عنوان مسأله رنگ آمیزی مدل بندی کرد. مسأله رنگ آمیزی فازی متشکل از تعیین عدد رنگی از یک گراف فازی و تابع رنگ آمیزی مرتبط با آن است. در این پژوهش، ابتدا مفاهیم و مقدمات اولیه فازی بیان می شود، سپس گراف فازی و مکمل آن توضیح داده می...
از مجموعه رئوس گراف g=(v,e) ،یک مجموعه ی غالب است، هرگاه هر رأس v در v-s با حداقل یک رأس از s مجاور باشد. عدد غالب gamma(g) از گرافg ، اندازه ی کوچک ترین مجموعه ی غالب از گراف است. در این پایان نامه، به بررسی مجموعه های غالب، عدد غالب و کران های آن در گراف ها می پردازیم. در ادامه، مجموعه غیرزائد و مجموعه وضعیت را معرفی کرده و رابطه ی آن ها را با مجموعه ی غالب بررسی می کنیم. در پایان، گراف ...
فرض می کنیم g یک گروه غیر بدیهی ، s=s^(-1) و 1?s?g. گراف کیلی g که به صورت cay(s:g) نمایش می دهیم یک گراف با مجموعه رئوس g است که در آن دو راس a و b مجاور هستند اگر ?ab?^(-1)?s. یک گراف صحیح است، اگر مقادیر ویژه مجاورت آن صحیح باشند. در این پایان نامه ما گراف های کیلی صحیح روی برخی گروه های متناهی را مورد بررسی قرار می دهیم. و همچنین تعداد گراف های کیلی صحیح حداکثر با n راس که n?{8,9,10} را مشخ...
در این پایان نامه به بررسی تعدادی شاخص های توپولوژیک می پردازیم.یکی از این شاخص ها فاصله-درجه است که می نیمم و ماکسیمم این شاخص روی گراف های همبند با nراس و m یال و هم چنین روی گراف های تک دوری و دودوری به دست می آید، به علاوه الگوریتمی برای محاسبه فاصله-درجه فولرن ها ارائه می شود.هم شاخص های زاگرب روی همه ی یال های غیر مجاور گراف تعریف می شوند. دراین پایان نامه مقدار این هم شاخص ها روی اعمال گ...
فرض کنیم a، b، c و d چهار عدد صحیح مثبت باشد و "k" _"a" ، "k" _"b" ، "k" _"c" و "k" _"d" گراف های کامل به ترتیب با a، b، c و d راس باشند اگر هر راس "k" _"a" و "k" _"c" را با هر راس از "k" _"b" و "k" _"d" مجاور کنیم گرافی شبیه به گراف شکل مقابل می شود. که آن را با نماد "r" _"a,b,c,d " نمایش می دهیم.
در بسیاری از مدلهای گراف های تصادفی، بیشتر یال ها مورد توجه بودند و رأس ها نقش چندانی نداشتند. در نظریه ی گراف تصادفی اردوش-رینی، ما n رأس داریم و با پرتاب سکهای حضور یال ها را مشخص می کنیم. حضور هر یال مستقل از یال های دیگر است. چنین مدلی وقتی که روابط بین اشیاء مستقل از دیگری است، مفید واقع می شود. در این پایان نامه، مدلی از گراف های تصادفی را مورد بررسی قرار می دهیم که در آن رأس ها مورد ...
رنگ آمیزی وقوعی یکی از انواع رنگ آمیزی گراف ها است. در گراف g مجموعه وقوع ها عبارت از مجموعه ی زوج های مرتب (v.e) است که در آن رأس v بر یال e واقع شده است. دو وقوع (v,e) و (w,f) را مجاور گویند هرگاه w=v یا e=f و یا یال vw برابر e یا f باشد. یک k-رنگ آمیزی وقوعی از گراف g را که با نمایش می دهیم، عبارت است از کوچکترین kایی که g دارای یک k- رنگ آمیزی وقوعی باشد. در این پایان نامه به مطالعه ی رنگ...
دراین تحقیق، r یک حلقه جابه جایی است . همچنین z(r) مجموعه مقسوم علیه های صفر r و u(r) مجموعه عناصر وارون پذیر r و nil(r) مجموعه عناصر پوچتوان r می باشند. در فصل ? نشان می دهیم که گراف مقسوم علیه صفر از یک حلقه، همبند است. در فصل ? نشان می د...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید