نتایج جستجو برای: گام mcmc

تعداد نتایج: 21212  

2000
Galin L. Jones James P. Hobert

Realistic statistical models often give rise to probability distributions that are computationally difficult to use for inference. Fortunately, we now have a collection of algorithms, known as Markov chain Monte Carlo (MCMC), that has brought many of these models within our computational reach. In turn, this has lead to a staggering amount of both theoretical and applied work on MCMC. Thus we d...

2014
Dougal Maclaurin Ryan P. Adams

Markov chain Monte Carlo (MCMC) is a popular and successful general-purpose tool for Bayesian inference. However, MCMC cannot be practically applied to large data sets because of the prohibitive cost of evaluating every likelihood term at every iteration. Here we present Firefly Monte Carlo (FlyMC) an auxiliary variable MCMC algorithm that only queries the likelihoods of a potentially small sub...

2017
Yichuan Zhang

Markov chain Monte Carlo (MCMC) is one of the most popular statistical inference methods in machine learning. Recent work shows that a significant improvement of the statistical efficiency of MCMC on complex distributions can be achieved by exploiting geometric properties of the target distribution. This is known as geometric MCMC. However, many such methods, like Riemannian manifold Hamiltonia...

Journal: :IEEE Transactions on Energy Conversion 2008

Journal: :Journal of the American Statistical Association 2018

2009
Roy Levy

Markov chain Monte Carlo MCMC estimation strategies represent a powerful approach to estimation in psychometric models. Popular MCMC samplers and their alignment with Bayesian approaches to modeling are discussed. Key historical and current developments of MCMC are surveyed, emphasizing how MCMC allows the researcher to overcome the limitations of other estimation paradigms, facilitates the est...

ژورنال: :مجله علوم آماری 0
رسول قره آغاجی rasool gharaaghaji urmia medical sciences university, urmia, iran.دانشگاه علوم پزشکی ارومیه محمدرضا مشکانی mohammad reza meshkani departement of statistics, shahid beheshti university, tehran, iran.گروه آمار، دانشگاه شهید بهشتی سقراط فقیه زاده soghrat faghihzadeh departement of biostatistics, tarbiat modares university, tehran, iran.گروه آمار زیستی، دانشگاه تربیت مدرس انوشیروان کاظم نژاد anooshirval kazemnejad departement of biostatistics, tarbiat modares university, tehran, iran.گروه آمار زیستی، دانشگاه تربیت مدرس غلامرضا بابایی gholam reza babaei departement of biostatistics, tarbiat modares university, tehran, iran.گروه آمار زیستی، دانشگاه تربیت مدرس فرید زایری farid zaeri departement of biostatistics, shahid beheshti medical sciences university, tehran, iran.گروه آمار زیستی، دانشگاه علوم پزشکی شهید بهشتی

مدل بندی پاسخ های ترتیبی همبسته معمولا پیچیده تر از پاسخ های پیوسته یا دو حالتی است. روش های موجود در برخی حالات، به ویژه وقتی پاسخ دو یا چند متغیره مورد بررسی به صورت نامتقارن باشد، چندان توسعه نیافته اند. پیش از این روش های مختلفی برای تحلیل پاسخ های ترتیبی و همبسته در کتب و مقالات پیشنهاد شده اند. در اینگونه مدل بندی ها اگر حجم نمونه کم باشد تحلیل کلاسیک کارایی ندارد و بهترین روش فایق آمدن ب...

2010
Arthur U. Asuncion Qiang Liu Alexander T. Ihler Padhraic Smyth

Learning undirected graphical models such as Markov random fields is an important machine learning task with applications in many domains. Since it is usually intractable to learn these models exactly, various approximate learning techniques have been developed, such as contrastive divergence (CD) and Markov chain Monte Carlo maximum likelihood estimation (MCMC-MLE). In this paper, we introduce...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید