نتایج جستجو برای: ژن myh7
تعداد نتایج: 16107 فیلتر نتایج به سال:
Familial hypertrophic cardiomyopathy is a genetically and phenotypically heterogeneous disease caused by mutations in seven sarcomeric protein genes. It is known to be transmitted as an autosomal dominant trait with rare de novo mutations.A French family in which two members are affected by hypertrophic cardiomyopathy was clinically screened with electrocardiography and echocardiography. Geneti...
Myosin storage myopathy (MSM) is a congenital myopathy characterized by the presence of subsarcolemmal inclusions of myosin in the majority of type I muscle fibers, and has been linked to 4 mutations in the slow/cardiac muscle myosin, beta-MyHC (MYH7). Although the majority of the >230 disease causing mutations in MYH7 are located in the globular head region of the molecule, those responsible f...
Familial hypertrophic cardiomyopathy is a genetically heterogeneous autosomal dominant disease, caused by mutations in several sarcomeric protein genes. So far, seven genes have been shown to be associated with the disease with the beta-myosin heavy chain (MYH7) and the cardiac myosin binding protein C (MYBPC3) genes being the most frequently involved. We performed electrocardiography (ECG) and...
BACKGROUND The 2 most commonly affected genes in hypertrophic cardiomyopathy (HCM) are MYH7 (β-myosin heavy chain) and MYBPC3 (β-myosin-binding protein C). Phenotypic differences between patients with mutations in these 2 genes have been inconsistent. Scarce data exist on the genotype-phenotype association as assessed by tomographic imaging using cardiac magnetic resonance imaging. METHODS AN...
OBJECTIVE Anthracyclines are successfully used in cancer treatment, but their use is limited by their cardiotoxic side effects. Several risk factors for anthracycline-associated cardiomyopathy (AACM) are known, yet the occurrence of AACM in the absence of these known risk factors suggests that other factors must play a role. The purpose of this study was to evaluate whether a genetic predisposi...
The potentiation of the naturally limited regenerative capacity of the heart is dependent on an understanding of the mechanisms that are activated in response to pathological conditions such as hypoxia. Under these conditions, the expression of genes suggested to support cardiomyocyte survival and heart adaptation is triggered. Particularly important are changes in the expression of myosin heav...
AIMS To evaluate the usefulness of denaturing high performance liquid chromatography (DHPLC) as a high throughput tool in: (1) DNA mutation detection in familial hypertrophic cardiomyopathy (FHC), and (2) single nucleotide polymorphism (SNP) discovery and validation in sporadic motor neurone disease (MND). METHODS The coding sequence and intron-exon boundaries of the cardiac beta myosin heavy...
Familial hypertrophic cardiomyopathy is a genetically heterogeneous autosomal dominant disease, caused by mutations in several sarcomeric protein genes. So far, seven genes have been shown to be associated with the disease with the â-myosin heavy chain (MYH7) and the cardiac myosin binding protein C (MYBPC3) genes being the most frequently involved. We performed electrocardiography (ECG) and ec...
Myosin is the primary regulator of muscle strength and contractility. Here we show that three myosin genes, Myh6, Myh7, and Myh7b, encode related intronic microRNAs (miRNAs), which, in turn, control muscle myosin content, myofiber identity, and muscle performance. Within the adult heart, the Myh6 gene, encoding a fast myosin, coexpresses miR-208a, which regulates the expression of two slow myos...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید