نتایج جستجو برای: هیبرید موجک عصبی

تعداد نتایج: 19550  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده کشاورزی 1390

با توجه به اهمیت پیش بینی جریان رودخانه در مدیریت منابع آب روش های مختلفی برای مدل کردن جریان رودخانه ها بکار برده شده است. تا بتوان با بکارگیری این مدل در مدیریت خشکسالی و سیلاب، خسارات ناشی از آنها را به حداقل ممکن رساند. در این مطالعه مدل شبکه عصبی و مدل هیبرید موجکی- شبکه عصبی برای پیش بینی جریان روزانه ایستگاه ونیار پیشنهاد گردیده است. برای استفاده از مدل هیبریدی سری زمانی به 12 زیر سری تج...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه قم - دانشکده مهندسی 1393

در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در...

ژورنال: :مهندسی سازه 0
پیمان شادمان باشگاه پژوهشگران جوان مهدی امری محمد خراسانی دانشگاه علم و صنعت ایران

نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدم­وجود شتابنگاشت­های مناسب در مناطق مختلف، تولید شتابنگاشت­های مصنوعی سازگار با طیف طرح را ضروری می­سازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی  برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...

مدلسازی نوسان‌های زمانی آب زیرزمینی، در مدیریت حوزه‏‏های آبریز و ایجاد تعادل در عرضه و تقاضای آب اهمیت زیادی دارد. در سال‏های اخیر استفاده از تحلیل موجک برای تجزیۀ سری‏های زمانی و ترکیب آن با شبکه‏های عصبی به‌صورت گسترده‏ای در مدلسازی پدیده‏های هیدرولوژیکی به‌­کار رفته ‏است. در این تحقیق، توانایی مدل ترکیبی موجک- شبکۀ عصبی پویا برای پیش‏بینی یک ماه آیندۀ عمق آب زیرزمینی ارزیابی شده و این مدل با...

حمیدرضا باباعلی رضا دهقانی,

خشکسالی یکی از پدیده‌های آب و هوایی است که در همه شرایط اقلیمی و در همه مناطق کره زمین به وقوع می‌پیوندد. پیش‌بینی خشکسالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستم‌های منابع آب، تعیین نیاز آبی گیاه ایفا می‌نماید. بدین منظور در این پژوهش از داده‏های 4 ایستگاه باران‌سنجی نورآباد، بروجرد، الشتر و دورود واقع در استان لرستان، به بررسی خشکسالی با استفاده از شاخص بارش استاندارد SPI در مقیاس‏های ز...

پیش‌بینی میزان مصرف آب شرب شهری یکی از دغدغه‌های نوین جوامع شهری معاصر بوده است. در این راستا، تحقیقات زیادی در زمینه مقایسه عملکرد مدل‌های مختلف انجام شده است. با معرفی شبکه عصبی مصنوعی، بحث پیرامون نحوه بهینه‌سازی آن‌ها با استفاده از روش‌های مختلف، بخصوص تبدیلات موجک داغ شد. در اغلب پژوهش‌ها اثر استفاده از تبدیلات موجک بر روی عملکرد و دقت مدل‌های عصبی مورد توجه قرار گرفت، اما تاثیر استفاده از...

در این مقاله از ترکیب شبکه‌های عصبی موجک (WNNs) به همراه الگوریتم آموزش بهینه‌سازی انبوه ذرات (PSO) جهت مدل‌سازی تغییرات زمانی محتوای الکترون کلی (TEC) یون‌<st...

  شاخص بازار سرمایه به عنوان دماسنج اقتصادی هر کشور می‌باشد. از این رو پیش‌بینی این متغییر جهت اخذ دید کلی از وضعیت اقتصادی و اخذ استراتژی‌های سرمایه‌گذاری، یکی از مسائل مهم به شمار می‌رود. از جمله روش‌های پیش‌بینی پرکاربرد در سری‌های زمانی مالی، شبکه عصبی می‌باشد که با توجه به جامعیت این روش و عدم وجود برخی از پیش‌فرض‌ها در خصوص داده‌ها، گسترش زیادی نسبت به روش‌های آماری یافته است. اما وجود نو...

ژورنال: :تحقیقات مرتع و بیابان ایران 2015
حمیده افخمی محمدرضا اختصاصی مژده محمدی

خشکسالی یک رویداد طبیعی است که می تواند خسارات قابل توجهی را به زندگی بشر وارد سازد. پیش بینی خشکسالی نقش موثری را در مدیریت منابع آب ایفا می کند. در این تحقیق به منظور پیش بینی خشکسالی سه مدل ترکیبی از انواع شبکه های عصبی و تبدیل موجک ارائه شده است و سپس با استفاده از این مدل ها، شاخص بارش استاندارد (spi) برای 12 ماه آینده در ایستگاه سینوپتیک یزد پیش بینی گردیده است. شبکه های عصبی مصنوعی توانا...

امروزه با توجه به اهمیت بالای مدیریت پایدار آب­های زیرزمینی، برای بررسی و ارزیابی منابع آب از مدل‌سازی و پیش‌بینی تراز آب­‌های زیرزمینی (GWL) استفاده می‌­شود. هدف از این پژوهش، ارزیابی عملکرد دو مدل ماشین یادگیری بیشینه (ELM) و شبکه عصبی مصنوعی (ANN) و همچنین، تلفیق آن دو مدل با الگوریتم تبدیل موجک (W-ELM و W-) است که در نهایت برای بالا بردن قدرت پیش­‌بینی و بهینه‌­کردن وزن­‌های ورودی (وزن­‌های...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید