نتایج جستجو برای: هیبرید موجک عصبی
تعداد نتایج: 19550 فیلتر نتایج به سال:
با توجه به اهمیت پیش بینی جریان رودخانه در مدیریت منابع آب روش های مختلفی برای مدل کردن جریان رودخانه ها بکار برده شده است. تا بتوان با بکارگیری این مدل در مدیریت خشکسالی و سیلاب، خسارات ناشی از آنها را به حداقل ممکن رساند. در این مطالعه مدل شبکه عصبی و مدل هیبرید موجکی- شبکه عصبی برای پیش بینی جریان روزانه ایستگاه ونیار پیشنهاد گردیده است. برای استفاده از مدل هیبریدی سری زمانی به 12 زیر سری تج...
در بسیاری از مناطق، استخراج بی¬رویه و خارج از قاعده آب¬های زیرزمینی که معمولاً به مراتب بیش از میزان تغذیه آن می¬باشد، اثرات جانبی زیان¬بار فراوانی از جمله کاهش سطح آب زیرزمینی، خشک شدن چاه¬ها، کاهش آب و یا خشک شدن قنات، چشمه¬ها و نهرها، تنزل کیفیت آب، افزایش هزینه پمپاژ و نشست زمین را در پی خواهد داشت. با وجود انعطاف¬پذیری شبکه¬های عصبی در پیش¬بینی سری¬های زمانی هیدرولوژیکی، گاهی این شبکه¬ها در...
نیاز روزافزون به تحلیل دینامیکی تاریخچه زمانی و عدموجود شتابنگاشتهای مناسب در مناطق مختلف، تولید شتابنگاشتهای مصنوعی سازگار با طیف طرح را ضروری میسازد. هدف اصلی این تحقیق ارائه روشی نوین، بر اساس تبدیل بسته موجک و روش های هوش مصنوعی برای تولید شتابنگاشت مصنوعی زلزله سازگار با طیف طرح بر اساس مقدار بزرگا، فاصله از گسل و طیف مربوطه می باشد. در این تحقیق از شبکه های عصبی فازی و آنالیز موجک پک...
مدلسازی نوسانهای زمانی آب زیرزمینی، در مدیریت حوزههای آبریز و ایجاد تعادل در عرضه و تقاضای آب اهمیت زیادی دارد. در سالهای اخیر استفاده از تحلیل موجک برای تجزیۀ سریهای زمانی و ترکیب آن با شبکههای عصبی بهصورت گستردهای در مدلسازی پدیدههای هیدرولوژیکی بهکار رفته است. در این تحقیق، توانایی مدل ترکیبی موجک- شبکۀ عصبی پویا برای پیشبینی یک ماه آیندۀ عمق آب زیرزمینی ارزیابی شده و این مدل با...
خشکسالی یکی از پدیدههای آب و هوایی است که در همه شرایط اقلیمی و در همه مناطق کره زمین به وقوع میپیوندد. پیشبینی خشکسالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستمهای منابع آب، تعیین نیاز آبی گیاه ایفا مینماید. بدین منظور در این پژوهش از دادههای 4 ایستگاه بارانسنجی نورآباد، بروجرد، الشتر و دورود واقع در استان لرستان، به بررسی خشکسالی با استفاده از شاخص بارش استاندارد SPI در مقیاسهای ز...
پیشبینی میزان مصرف آب شرب شهری یکی از دغدغههای نوین جوامع شهری معاصر بوده است. در این راستا، تحقیقات زیادی در زمینه مقایسه عملکرد مدلهای مختلف انجام شده است. با معرفی شبکه عصبی مصنوعی، بحث پیرامون نحوه بهینهسازی آنها با استفاده از روشهای مختلف، بخصوص تبدیلات موجک داغ شد. در اغلب پژوهشها اثر استفاده از تبدیلات موجک بر روی عملکرد و دقت مدلهای عصبی مورد توجه قرار گرفت، اما تاثیر استفاده از...
در این مقاله از ترکیب شبکههای عصبی موجک (WNNs) به همراه الگوریتم آموزش بهینهسازی انبوه ذرات (PSO) جهت مدلسازی تغییرات زمانی محتوای الکترون کلی (TEC) یون<st...
شاخص بازار سرمایه به عنوان دماسنج اقتصادی هر کشور میباشد. از این رو پیشبینی این متغییر جهت اخذ دید کلی از وضعیت اقتصادی و اخذ استراتژیهای سرمایهگذاری، یکی از مسائل مهم به شمار میرود. از جمله روشهای پیشبینی پرکاربرد در سریهای زمانی مالی، شبکه عصبی میباشد که با توجه به جامعیت این روش و عدم وجود برخی از پیشفرضها در خصوص دادهها، گسترش زیادی نسبت به روشهای آماری یافته است. اما وجود نو...
خشکسالی یک رویداد طبیعی است که می تواند خسارات قابل توجهی را به زندگی بشر وارد سازد. پیش بینی خشکسالی نقش موثری را در مدیریت منابع آب ایفا می کند. در این تحقیق به منظور پیش بینی خشکسالی سه مدل ترکیبی از انواع شبکه های عصبی و تبدیل موجک ارائه شده است و سپس با استفاده از این مدل ها، شاخص بارش استاندارد (spi) برای 12 ماه آینده در ایستگاه سینوپتیک یزد پیش بینی گردیده است. شبکه های عصبی مصنوعی توانا...
امروزه با توجه به اهمیت بالای مدیریت پایدار آبهای زیرزمینی، برای بررسی و ارزیابی منابع آب از مدلسازی و پیشبینی تراز آبهای زیرزمینی (GWL) استفاده میشود. هدف از این پژوهش، ارزیابی عملکرد دو مدل ماشین یادگیری بیشینه (ELM) و شبکه عصبی مصنوعی (ANN) و همچنین، تلفیق آن دو مدل با الگوریتم تبدیل موجک (W-ELM و W-) است که در نهایت برای بالا بردن قدرت پیشبینی و بهینهکردن وزنهای ورودی (وزنهای...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید