نتایج جستجو برای: نگاشت قویا انقباضی
تعداد نتایج: 3562 فیلتر نتایج به سال:
مفهوم نقاط ثابت دوتایی را باسکار و لکشمیکنتام در سال 2006 معرفی کردند، آن ها چند قضیه نقطه ثابت دوتایی برای نگاشت های یکنوای مخلوط در فضاهای متری جزئی به دست آوردند و این قضایا را در اثبات وجود و یکتایی جواب مسائل مرزی به کار بردند. پس از آن لکشمیکنتام و جریچ چند قضیه نقطه ثابت دوتایی و نقطه انطباق دوتایی را برای دو نگاشت f و g که دارای خاصیت g-یکنوای مخلوط است، به دست آوردند. از آن پس قضایای ن...
چکیده در این پایان نامه به بررسی شرایط کافی برای قویا ستاره گون بودن توابع p- ارزاز مرتبه ی ?و از نوع ? درuپرداخته و داریم: فرض کنیم a_pکلاس نگاشت های f(z) به شکل f(z)=z^p+?_(n=1)^???a_(p+n) z^(p+n) ? (p?n={1,2,3,…}) که هر کدام روی دیسک واحد بازu={z:|z|<1} تحلیلی هستند، باشد.تابع f(z)?a_p را ستاره گون p- ارز از مرتبه ی ?می گوییم هر گاه برای هر ??[0,1) و هر z?u داشته باشیم: re((zf^ (z))/f(...
هدف از این پایان نامه معرفی فضاهای متریک احتمالی و بررسی قضایای نقطه ثابت در این فضاهاست. بدین منظور، ابتدا t- نرم ها و خواص آنها را برسی کرده سپس به معرفی فضاهای متریک احتمالی می پردازیم. در پایان مروری بر انواع نگاشت های انقباضی در فضاهای متریک احتمالی و قضایای نقطه ثابت در این فضاها خواهیم داشت. کلمات کلیدی: فضای متریک احتمالی، t- نرم، نگاشت انقباضی، نقطه ثابت
چکیده قضیه نقطه ثابت باناخ که به اصل انقباض باناخ نیز مشهور است ، یکی از قضایای اصلی در نظریه نقطه ثابت است . بعد از مقال? باناخ ، ریاضی دانان تلاش هایی برای تعمیم این قضیه انجام دادند . برای مثال در سال 197? ، چیریچ [7] ، نگاشت های شبه انقباضی را معرفی و قضیه وجود و یکتایی نقطه ثابت برای این نگاشت ها را اثبات کرد . موضوع تعمیم قضیه نقطه ثابت باناخ برای نگاشت های چند مقداری ( که به آ...
نظریه نقطه ثابت زوجی یک روش برای مشخص نمودن برخی ویژگی های فضاهای متریک است. در این رساله قضایای نقطه ثابت زوجی را برای برخی نگاشت ها و توابع مجموع مقدار ارایه خواهیم نمود. همچنین مفهوم نگاشت های ?-?-انقباضی را معرفی خواهیم کرد و به بررسی چند قضیه برای نقاط ثابت زوجی چنین نگاشت هایی می پردازیم. در این رساله قصد داریم نشان دهیم که بسیاری از نتایج نقاط ثابت زوجی را می توان با به کارگیری ی...
این پایان نامه شامل دو بخش می باشد. در بخش اول به معرفی مهم ترین الگوی تکرار که به الگوی تکرار ایشیکاوا معروف است می پردازیم. فرض کنید c یک زیر مجموعه ناتهی، بسته و محدب از یک فضای هیلبرت حقیقی h باشد به علاوه فرض کنید t_i:c?c، خانواده ای متناهی از نگاشت های شبه انقباضی و لیپ شیتس باشد. هدف ما در این بخش اثبات قضیه همگرایی قوی از روش ایشیکاوا به نقطه ثابت مشترک خانواده متناهی از نگاشت های شبه ا...
هدف این رساله بررسی روش هایی برای یافتن نقاط ثابت نگاشت های نقطه&وار ناانبساطی و نقطه&وار ناانبساطی مجانبی است که در سه فصل تنظیم شده است. در فصل دوم به معرفی روش ها برای یافتن نقاط ثابت نگاشت های نقطه&وار ناانبساطی و نقطه&وار ناانبساطی مجانبی روی زیرمجموعه های ناتهی، محدب، بسته و کراندار از فضاهای باناخ به طور یکنواخت محدب و در فصل سوم به بررسی شرایط کلی&تر از نگاشت&های نقطه&وار ناانبساطی پردا...
در این رساله به بررسی وجود و همگرایی بهترین نقاط تقریبی برای رده های مختلفی از نگاشت ها در فضاهای متریک و باناخ، با در نظر گرفتن خاصیت های هندسی مناسب روی فضاهای مورد بحث، می پردازیم. سپس با استفاده از این مطالب، به تحقیق پیرامون وجود جواب برای برخی مسائل کمینه سازی که مبتنی بر تخمین فاصله دو مجموعه می باشند می پردازیم. نتایج حاصله را می توان به عنوان تعمیم هایی از قضایای وجود و تقریب نقاط ثابت...
در این پایان نامه به بررسی تعدادی از سیستم های دینامیکی مجموعه مقدار و نقاط انتهایی آنها می پردازیم و دنباله هایی را به دست می آوریم که همگرا به این نقاط انتهایی هستند. هدف، تعمیم قضیه ی انقباضی باناخ و پیدا کردن شرایطی روی فضای و روی نگاشت مجموعه مقدار tاست به طوری که این نگاشت ها دارای نقطه ی انتهایی باشند. به این منظور چند نوع از نگاشت های انقباضی را معرفی کرده و روشهای مفیدی برای به دست آ...
چکیده دراین پایان نامه دیدگاه نظریه ی ترتیب را به طور خلاصه شرح می دهیم ;یعنی، نشان می دهیم که چگونه با استفاده از قضایای نقطه ثابت در نظریه ی ترتیب، قضایای وجودی کلی را درباره بزرگترین مجموعه و مجموعه ی مینیمال ثابت و تقریباً-ثابت خانواده ای تعویض پذیر از خود-نگاشت های مجموعه مقدار بسته ی (بسته و مجموعه انقباضی) تعریف شده بر یک فضای توپولوژیکی فشرده (فضای متریک کامل و کراندار) نتیجه بگیریم. عک...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید