نتایج جستجو برای: میانگین پذیری ایده آلی
تعداد نتایج: 131694 فیلتر نتایج به سال:
فرض کنید a یک جبر باناخ و ? یک تابعک خطی غیر صفر کراندار و ضربی روی a باشد گوئیم a, ? میانگین پذیر است هر گاه یک m عضو **a موجود باشد که m(?)=1 و m(f.a)=?(a)m(f) وقتی f عضو **aو a عضو a باشد. دراین پایان نامه به مطالعه ی ?ـمیانگین پذیری جبرهای باناخ پرداخته و ارتباط آن با میانگین پذیری, حاصل ضرب تانسوری و مجموع مستقیم جبرهای باناخ را مورد بررسی قرار می دهیم...
فرض کنید a یک جبر باناخ باشد. ما در این پایان نامه ایده آل های بسته i از a که اولین گروه کوهمولوژی از a با ضرایبی در i^* است را مطالعه می کنیم یعنی 0=( a,i^*) h^1 . همچین ایده آل های بسته را وقتی a میانگین پذیر ضعیف یا دوهمواری است و نیز بعضی خواص ارثی ایده آل های میانگین پذیر را بررسی می کنیم.
فرض کنیم g یک گروه موضعا فشرده باشد هدف از این پایان نامه بررسی شرایطی است که ? l?^p (g) به عنوان یک باناخ l^1 (g)- مدول تزریقی و میانگین پذیر باشد. در واقع با تعریف مفهوم چند نرمیها بر روی فضاهای باناخ به هدف خود میرسیم. ابتدا در یک حالت خاص که s یک نیمگروه باشد در مورد تزریقی بودن فضای l^1 (s) مطالعه می کنیم سپس با ارایه مثال هایی از نیمگروه های مختلف مشاهده می کنیم اگرs نیمگروهی باشد که میان...
در این پایان نامه، شرایط لازم و کافی برای میانگین پذیری جبر باناخ a، به ویژه قضیه جانسون را مطالعه می کنیم. هم چنین رابطه میانگین پذیری و منظم بودن جبر باناخ a را تحقیق می کنیم. علاوه بر این شرایطی را بررسی می کنیم که تحت آن میانگین پذیری ضعیف دوگان دوم a ، میانگین پذیری ضعیف a را ایجاب می کند
0
در این پایان نامه به بسط مفهوم میانگین پذیری مدولی پرداخته ایم و هم ارزی میانگین پذیری مدولی و وجود قطر واقعی مدولی را به اثبات رساندیم و در ادامه قضیه مشهور جانسون را تعمیم دادیم و میانگین پذیری مدولی را برای کلاسی از جبرهای باناخ ثابت نمودیم، در واقع نشان دادیمs)l^1) به عنوان یک e))l^1-مدول میانگین پذیر مدولی است اگر و فقط اگر s میانگین پذیر باشد.
در این پایان نامه ابتدا ضرب مدولی و ضرب آرنز را مورد بررسی قرار می دهیم و قضایای اساسی را برای آنها اثبات می کنیم سپس مفهوم n-میانگین پذیری را برای nهای عضو z توسیع می دهیم، در پایان مطالبی راجب عملگرهای فسرده ضعیف بیان می کنیم. در این پایان نامه که در سه فصل گرداوری شده است، تمام قضایای اساسی فصل3 اثبات شده است.
جبر باناخ n، a میانگین پذیر ضعیف است هرگاه اولین گروه کوهمولوژی پیوسته a با ضرایب درn اُمین دوگان a صفر شود. همچنین a میانگین پذیر دائماً ضعیف است، هرگاه برای هر n جبر n، a میانگین پذیر ضعیف باشد. در فصل سوم ارتباط بین m -میانگین پذیری ضعیف و n- میانگین پذیری ضعیف را برای دو عدد مجزای m و n بررسی می کنیم. همچنین نشان می دهیم که تحت چه شرایطی جبرهای باناخ مختلف، n -میانگین پذیر ضعیف هستند. در فص...
فرض کنید k یک ابرگروه موضعاً فشرده باشد. هم چنین l^1(k) و uc(k) به ترتیب جبر ابرگروه ها و فضای تمام توابع کران دار بطور یکنواخت پیوسته روی k باشند. هدف این پایان نامه تعمیمم دادن مفهوم ?-میانگین پذیری برای ابر گروه k به فضای باناخ uc(k) می باشد. نشان داده می شود که ?میانگین پذیری ابرگروهkهم ارز -?میانگین پذیری فضای باناخ (uc(k است و یک -?میانگین برروی k یکتا است اگر ...
در این مقاله میانگین پذیری تقریبی ضعیف n – ? ومیانگین پذیری کاراکتر داخلی از جبر مجرد را بررسی می کنیم ? همومورفیسم می باشد که پیوسته است قرار میدهیم bرا به جبر سگال مجرد در فضای باناخ a با تقریب مرکزی همانی به طوری که کراندار در فضای نرم a می باشد و این مستلزم آن است که ? عضو همومورفیسم a باشد به طوری که b? در همومورفیسم b. ما ثابت می کنیم برای هر n عضو n اگر a میانگین پذیر ضعیف n – ?باشد پس...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید