نتایج جستجو برای: منظم آرنز
تعداد نتایج: 6990 فیلتر نتایج به سال:
فرض کنیم a جبر باناخ باشد که شامل جبرهای گروهی (g )a ، (g )m و ( g ) l1 است. ابتدا ضرب اول و دوم آرنز را روی دوگان دوم a؛ یعنی، ?? a تعریف کرده و ثابت میکنیم که ?? a با هر یک از ضرب های آرنز، جبر باناخ است. سپس نشان می دهیم که نظم پذیری آرنز ?? a معادل با نظم پذیری آرنز a و میانگین پذیری ?? a معادل با میانگین پذیری و نظم پذیری a می باشد. هم چنین جبرهای گروهی وزندار (w ,g) l1 و (w ,g)m را م...
فرض کنیم g گروهی توپولوژیک و جبر باناخ*(luc(g ، دوگان *c-جبر جابجایی از توابع بطور یکنواخت پیوسته چپ کراندار روی گروه g، باشد. مرکز توپولوژیک آن را برای گروههای نه لزوما موضعا فشرده را مورد بررسی قرار می دهیم. در نهایت نتایجی برای مرکز توپولوژیک فشرده سازی(g(luc اثبات می کنیم.
در این پایان نامه فرض کنیم a یک جبر باناخ با ضرب صادق و * جبر باناخ خارج قسمتیa** با ضرب آرنز چپ باشد. یک جبر باناخ معرفی می کنیم که زیرفضای بسته از * با ضرب متفاوت از آن است. به کمک این جبر باناخ مشخصه هایی برای مرکز توپولوژیک (*) zt از * به دست می آید و یک مشخه برای (*) zt وقتی که a ?دارای تقریب همانی کراندار است و توسط لائو و اولگر به دست آمده را به تمامی جبرهای...
چکیده ندارد.
چکیده: فرض کنیم یک فضای باناخ بوده و فضای دوگان دوم آن باشد. روی ضرب های اول و دوم آرنز را تعریف می کنیم و سپس در حالتی که یک گروه موضعاً فشرده است دوگان دوم را به جبر باناخی تبدیل می کنیم که عمل ضرب روی آن همان ضرب اول و یا ضرب دوم آرنز است. سپس مرکز توپولوژی را بدست می آوریم و نشان می دهیم که اگر یک گروه آبلی باشد آنگاه مرکز توپولوژی با برابر است. بالاخره، نشان می دهیم که اگر و گروه های آبلی م...
گوییم جبر باناخ a دوگان است اگر یک زیر مدول بسته a_* از a^* موجود باشد که a=?(a_*)?^*. رده جبرهای باناخ دوگان شامل تمام w^* جبرهاست و همچنین شامل تمام جبرهای m(g) برای گروههای موضعاً فشرده g و تمام جبرهای l(e) برای فضای باناخ بازتابی e است. ابتدا نشان میدهیم تحت شرایطی معین یک جبر باناخ دوگان میانگین پذیر، یک جبر باناخ ابر- میانگین پذیر و بنابراین متناهی البعد است. سپس دو مفهوم میانگین پذیری ، ...
در این پایان نامه میانگین پذیری مدولی ضعیف جبر باناخ a که با اعمال سازگار روی یک جبر باناخ دیگر a یک مدول باناخ است را تعریف کرده و نشان میدهیم که تحت چه شرایطی میانگین پذیری مدولی ضعیف a^(**) میانگین پذیری مدولی ضعیف a را نتیجه خواهد داد. همچنین به همراه نتایج دیگر، رابطه ی بین آرنز منظم پذیری مدولی یک جبر باناخ و میانگین پذیری مدولی دوگان دوم آن را بررسی می کنیم. به عنوان یک نتیجه ثابت می کنی...
میانگین پذیری دوگان دوم یک جبر باناخ aمیانگین پذیری جبر باناخaرا نتیجه می دهد.اما تاکنون مثالی ارائه نشده است که نشان دهد میانگین پذیری ضعیف دوگان دوم جبر باناخ aمیانگین پذیری ضعیف aرا نتیجه ندهد.این ویژگی برای جبر گروهی (l1(gو جبرهای فوریه (a(gزمانی که gیک گروه میانگین پذیر باشد ثابت شده است.همچنین برای جبر باناخa زمانی که a منظم آرنز باشد و هر اشتقاق از a به *aفشرده ضعیف باشد و همچنینa یک اید...
نیم ساده بودن دوکان دوم جبر باناخ از عملکرهای روی فضای باناخ، (b(e، با هر دو ضرب ارنز القایی را بررسی می کنیم. نشان میدهیم برای ریه بزرکی از فضاهای باناخ e، که زیر فضاهایی او فضای l^p را در بریاری و با فضای هیلبرت یکریخت نیستند (b(e نیم ساده نیست. این موضوع از یک نمایش جدید او (b(l^p نتیجه می شود، سبس ساختار یک عضو از رادیکال (b(l^p برای p مخالف دو را بدست می آوریم.
فرض کنیم r یک حلقه باشد. در این پایان نامه ابتدا به بررسی انواع مختلف حلقه های منظم می پردازیم سپس به معرفی و مطالعه مقدماتی گروه حلقه ها پرداخته و خاصیت منظم بودن را در گروه حلقه ها بررسی می کنیم و در ادامه حلقه های قویاً منظم جابجایی پذیر را معرفی و به بررسی خواص این نوع حلقه ها و ارتباط آن با سایر حلقه های منظم پرداخته ایم و نشان میدهیم حلقه ای با این ویژگی، ?- منظم، قویاً ?- منظم و منظم جا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید