نتایج جستجو برای: معادله ژاکوبی jacobi equation

تعداد نتایج: 249052  

Journal: :SIAM J. Control and Optimization 2000
J. J. Ye

In general, the value function associated with an exit time problem is a discontinuous function. We prove that the lower (upper) semicontinuous envelope of the value function is a supersolution (subsolution) of the Hamilton–Jacobi equation involving the proximal subdifferentials (superdifferentials) with subdifferential-type (superdifferential-type) mixed boundary condition. We also show that i...

2011
Robin Chhabra

This document is a brief overview of the Hamilton-Jacobi theory of Chaplygin systems based on [1]. In this paper, after reducing Chaplygin systems, Ohsawa et al. use a technique that they call Chaplygin Hamiltonization to turn the reduced Chaplygin systems into Hamiltonian systems. This method was first introduced in a paper by Chaplygin in 1911 where he reduced some nonholonomic systems by the...

2002
C. Chicone

The Jacobi equation in pseudo-Riemannian geometry determines the linearized geodesic flow. The linearization ignores the relative velocity of the geodesics. The generalized Jacobi equation takes the relative velocity into account; that is, when the geodesics are neighboring but their relative velocity is arbitrary the corresponding geodesic deviation equation is the generalized Jacobi equation....

2014
Xifeng Su Lin Wang Jun Yan WANG J. YAN

We consider the following evolutionary Hamilton-Jacobi equation with initial condition: { ∂tu(x, t) +H(x, u(x, t), ∂xu(x, t)) = 0, u(x, 0) = φ(x). Under some assumptions on H(x, u, p) with respect to p and u, we provide a variational principle on the evolutionary Hamilton-Jacobi equation. By introducing an implicitly defined solution semigroup, we extend Fathi’s weak KAM theory to certain more ...

Journal: :J. Sci. Comput. 2006
Ben-yu Guo Jie Shen Li-Lian Wang

We extend the definition of the classical Jacobi polynomials withindexes α,β > −1 to allow α and/or β to be negative integers. We show that the generalized Jacobi polynomials, with indexes corresponding to the number of boundary conditions in a given partial differential equation, are the natural basis functions for the spectral approximation of this partial differential equation. Moreover, the...

2010
Dianchen Lu Qian Shi

In this work, we established exact solutions for the combined KdV-MKdV equation. By constructing four new types of Jacobi elliptic functions solutions, the Jacobi elliptic functions expansion method will be extend. With the aid of symbolic computation system mathematica, obtain some new exact periodic solutions of nonlinear combined KdV-MKdV equation , and these solutions are degenerated to sol...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده ریاضی 1392

این روش یک معادله دیفرانسیل جزئی مرتبه اول خطی به نام معادله ی "همیلتن-ژاکوبی-بلمن تعمیم یافته " است. در واقع ما بوسیله ی این معادله یک الگوریتم تکراری را ارائه کردیمد که می تواند با استفاده از یک کنترل قابل قبول دلخواه، کنترلی بسیار نزدیک به کنترل بهینه را بدست آورد. همچنین در این پایان نامه همگرایی و پایداری کنترلهای بدست آمده توسط این الگوریتم را مورد بررسی قرار دادیم و در پایان مقایسه ها و...

2011
TOMOKI OHSAWA

We develop Hamilton–Jacobi theory for Chaplygin systems, a certain class of nonholonomic mechanical systems with symmetries, using a technique called Hamiltonization, which transforms nonholonomic systems into Hamiltonian systems. We give a geometric account of the Hamiltonization, identify necessary and sufficient conditions for Hamiltonization, and apply the conventional Hamilton–Jacobi theor...

2003
J. Qian W. W. Symes

Stationary quasi-P eikonal equations, stationary Hamilton-Jacobi equations, arise from the asymptotic approximation of anisotropic wave propagation. A paraxial formulation of the quasi-P eikonal equation results in a paraxial quasi-P eikonal equation, an evolution Hamilton-Jacobi equation in a preferred direction, which provides a fast and efficient way for computing viscosity solutions of quas...

Journal: :J. Applied Mathematics 2012
Khaled A. Gepreel A. R. Shehata

We put a direct new method to construct the rational Jacobi elliptic solutions for nonlinear differential difference equations which may be called the rational Jacobi elliptic functions method. We use the rational Jacobi elliptic function method to construct many new exact solutions for some nonlinear differential difference equations in mathematical physics via the lattice equation and the dis...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید