نتایج جستجو برای: معادله تفاضلی دیفرانسیل
تعداد نتایج: 16135 فیلتر نتایج به سال:
در این پژوهش تحلیل ترموالاستیک استوانه جدارضخیم با خواص وابسته به دما بررسی می شود. کلیه خواص جز ضریب پواسونتابعی از دما و شعاع می باشد. با فرضیات مذکور، معادله دیفرانسیل غیرخطی برای توزیع انتقال حرارت در مختصات استوانهای حاصل میگردد. حل این معادله به روش اغتشاشات سنتی، توزیع انتقال حرارت در استوانه را بهصورت تقریبی- تحلیلی منتجه میشود. معادله دیفرانسیل حاکم بر مسئله، با در نظر گرفتن روابط ...
معادلات انتگرال یکی از ابزارهای مهم در ریاضیات کاربردی و محض است. این نوع معادلات در مدل سازی بسیاری از پدیده های غیرخطی، پدیده های فیزیکی و علوم مهندسی ظاهر می شوند. اکثر پدیده های فیزیکی و مسائل مهندسی مانند دینامیک سیالات، مکانیک کوانتومی، انتقال حرارت، رشد جمعیت و وراثت، مطالعه ی رفتار راکتورهای هسته ای ، انتقال بیماری و ... را می توان از طریق مدل سازی ریاضی آن ها درک کرد. در واقع بعد از بی...
چکیده پایان نامه :دراین پایان نامه یک روش هم محلی متحرک برای حل معادلات با مشتقات جزئی کسری وابسته زمانی بیان و بررسی می شود. روش با نوشتن معادله دیفرانسیل کسری به شکل یک معادله تفاضلی زمانی حاصل می شود. این روش یک روش پایدار و دارای همگرایی مرتبه سه نسبت به مکان و همگرایی مرتبه یک نسبت به زمان می باشد. در انتها نیز نتایج عددی به منظور اعتبار نتایج نظری ارائه شده است.
در این پایان نامه یک تقریب عددی مبتنی بر روش سینک، برای حل معادلات دیفرانسیل معمولی و پاره ای مورد بررسی قرار می گیرد. به طوری که این تقریب عددی را برای معادلات دیفرانسیل معمولی و پاره ای خطی مرتبه دوم و معادلات دیفرانسیل-انتگرالی غیرخطی مرتبه دوم با روش های سینک گالرکین و سینک هم محلی بدست می آوریم. همچنین معادله گرمای ناهمگن با دامنه متناهی را با استفاده از روش سینک گالرکین مورد بررسی قرار می...
دراین پایان نامه بعضی از معادلات معروف را بااستفاده از روش زیرمعادله دیفرانسیل معمولی برنولی حل کرده ایم.معادلات دیفرانسیل بامشتقات جزئی غیرخطیرا با تغییرمتغیر مناسب به معادلات دیفرانسیل معمولی تبدیل نموده وپس از یکسری اعمال جبری مناسب،جواب های دقیق معادلات رابه طوریکه به جواب معادله برنولی وابسته شود،به دست می آوریم.
پاسخ عددی معادلات دیفرانسیل تصادفی، به خصوص معادلات دیفرانسیل با مشتقات جزیی تصادفی به نسبت نسخه های غیرتصادفی زمینه ای جدید است. تقریبا اکثر الگوریتم هایی که جواب های نسبتا مناسبی برای معادلات دیفرانسیل معمولی به دست می دهند، جواب هایی ضعیف در برابر نسخه تصادفی آن دارند. از جمله راه حل های معرفی شده، روش اویلر-مارایوما و روش میلستین و روش رونگه کوتا برای معادلات دیفرانسیل تصادفی است. دراین پای...
یکی از شاخه های علمی ریاضی که کاربرد های فراوانی در مسائل علوم مهندسی و فیزیک دارد معادلات دیفرانسیل می باشد.روش های عددی متعددی برای بدست آوردن جواب های تقریبی وجود دارد. در این پایان نامه ابتدا در فصل اول به تعاریف مفاهیم اولیه و توابعی که در فصل های بعدی به کار می رود می پردازد.در فصل دوم روش دیفرانسیل تبدیل یافته و انواع آن شرح دادهمی شود. در فصل سوم مثال های عددی هریک از عناوین ذکر شده در ...
در این پایان نامه فرم جواب های معادله فلکویت که یک دیفرانسیل خطی مرتبه دوم با مشتقات معمولی است را معین می کنیم. همچنین دو معادله دیگر به نام معادله هیل و معادله متیو که نوع خاصی از معادله فلکویت می باشند را معرفی کرده وسعی در یافتن بازه های پایداری این معادلات خواهیم داشت. معین کردن بازه های ناپایداری این معادلات در فیزیک، الکترونیک و فوتونیک که به آن ها بازه های ممنوعه می گویند اهمیت و کاربرد...
در فصل اول برخی از تعاریفو مفاهیم اولیه مربوط به معادلات دیفرانسیل جزیی آورده شده اند و در انتهای این فصل، معادلات دیفرانسیل معمولی برنولی و ریکاتی به همراه جواب های آن ها را بیان کرده ایم. در فصل دوم روشهای متغیر تابعی، سینوس- کسینوس، تانژانت هذلولی ( متعارفی، توسعه یافته ) و روش بسط- g/g را برای حل تحلیلی معادلات دیفرانسیل جزیی غیر خطی، معرفی کرده ایم و سپس در ادامه هر روش سعی شده است تا با ا...
در این پایان نامه با بررسی معادلات تفاضلی شرایط پایداری نمایی و مجانبی این معادلات را در حالات مختلف بررسی می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید