نتایج جستجو برای: مدلp a f
تعداد نتایج: 13483335 فیلتر نتایج به سال:
فرض کنید a کلاسی از توابع تحلیلی نرمالیزه در دیسک واحد u باشد . و فرض کنید (, ? p(? کلاسی از همه توابع f?a باشد که در شرایط زیر صدق کند . ???r, re {ei? [(1-?)(f(z)/z)? +?zf(z)/f(z)(f(z)/z)?-?]}>0 در این پایان نامه تبدیل انتگرالیz)={?_0^1???(t)(f(tz)?/t)?dt}1/? ) v?,? را بررسی می کنیم بطوریکه? یک تابع وزنی حفیفی مقدار نامنفی و نر مالیزه شده توسط?_0^1???(t)dt=1?است. هدف اصلی ما یافتن شرایطی رو...
چکیده یک نگاشت (نه لزوماً خطی) مانند t:x?y بین فضاهای باناخ x و y یک ایزومتری 2- موضعی نامیده می شود هرگاه برای هر f,g?a، ایزمتری خطی پوشای s:x?y موجود باشد که t(x)=s(x) و t(y)=s(y). در حالتی که a یک جبر باناخ باشد، نگاشت t:a?a خودریختی 2- موضعی نامیده می شود هرگاه برای هر f,g?a، خودریختی s روی a موجود باشد که t(f)=s(f) و t(g)=s(g). در این پایان نامه که مراجع اصلی آن [af] و [hmot] می ب...
فرض کنید c^1[0,1] جبر توابع مشتق پذیر پیوسته از فاصله واحد [0,1] به توی c باشد. هدف اصلی این پایان نامه مشخصه سازی نگاشت های دو خطی پیوسته از c^1[0,1]× c^1[0,1] به توی فضای باناخ x مانند ? است مشروط به این که اگر f,g?c^1[0,1] که fg=0 آنگاه ? (f,g)=0. عملگر خطی tاز جبر باناخ a به توی جبر باناخ b را حافظ ضرب صفر گوییم در صورتی که اگر a,b? a و ab=0 آنگاه ta....
در این پایان نامه دو ویژگی مهم از طیف عناصر در f-جبرها به دست آمد. در حقیقت اثبات شده است که درf-جبر یکدار بنیادی و قویا کراندار a ، طیف عنصر a یا همان sp(a) ، فشرده است. علاوه بر این اگر فضای دوگان a یا همان a^* ، عناصر a را جدا سازد sp(a) مخالف تهی می باشد.
فرض می کنیم a یک جبر روی میدان f (r یا) و a1 هر زیر جبری از a باشد، نگاشت جمعی (خطی) d: a1--->a را مشتق گیری جمعی (خطی) نامیده می شود اگر d(ab)ad(b) + d(a)b, a,b a1 و d را inner گوئیم در صورتیکه وجود داشته باشد c a1 ای بطوریکه: d(a)ac - ca, a a1 فرض می کنیم x یک فضای برداری نرم دار، و b(x) جبر عملگرهای خطی کراندار روی x باشد، مجموعه عملگرهای خطی کرانداری که دارای رتبه متناهی می باشد را با f(x) ...
در فصل اول این پایان نامه، مفاهیم و تعاریف اولیه مورد نیاز را بیان نموده ایم. در فصل دوم قضایای سه نقطه بحرانی و ساختاری از مجموعه بحرانی ارائه شد که در فصل های بعدی کاربرد های آن را برای وجود جواب برای مسائل مقدار مرزی بررسی کردیم. سپس وجود سه جواب ضعیف را برای مسئله دیریکله بیضوی زیر {?(-?u=?f(x,u) in ?@u=0 on ??)? جایی که ? زیر مجموعه باز، کراندار و ناتهی از فضای اقلیدسی (r^n,|.|) ، n? 3 ...
فضای x را در نظر می گیریم. اگر برای زیرمجموعه های دلخواه a و b از x که a شمارا و b از رسته اول باشد هومئومورفیسم f: x → x وجود داشته باشد به قسمی که ∅=f(a)∩ b آنگاه می گوییم فضای x خاصیت تفکیک دارد و یا به طور خلاصه می گوییم x یک فضای sp است. در این پایاننامه فضاهای sp را مورد مطالعه قرار می دهیم. فضای توپولوژیک x را در نظر می گیریم. اگر برای هر x,y∋x هومئومورفیسم f:x→xوجود داشته باشد که f(...
?نگاشت دوخط و کراندار روی فضاهای نرمدار در نظر ب یرید. آرنز 1 در? ?نگاشت ? f : x × y ?? y?را ی? ?سال 1?91 در ]?[ دو توسیع متفاوت ??? ? f?و ? f t???t?از ? f?را معرف کرد و حالت را که در آن این دو توسیع با? ?هم برابرند منظم آرنزی نگاشت دوخط ? f?نامید. در حالت خاص اگر ? ??نگاشت ضربی روی جبر باناخ ? a?باشد? ?آنگاه این دو توسیع دو ضرب متفاوت به نام ضرب اول و ضرب دوم آرنز روی فضای دوگان دوم ? a?یعن...
فرض کنیم x و y فضاهای موضعاً فشرده ی هاوسدورف باشند، a و b به ترتیب جبرهای تابعی یکنواخت بسته بر x و y باشند و t : a ?b یک نگاشت خطی - حقیقی طولپای از a بروی b باشد. در این صورت یک نگاشت پیوسته مانند k :ch(b , y) ? ? با شرط , k(ch(b , y)) ? { z ? ?: ? z ?=1}, یک زیرمجموعه ی بسته و باز ch(b , y) مانند k (که ممکن است تهی باشد.) و یک همسانریختی مانند ? : ch(b , y) ? ch(a , x) وجود دارند به طوری که ...
اب با ?ک نگاشت چندمقداره از مرتبه?ی کمتر به منظور مطالعه و وجود جواب?های آن استفاده خواه?م کرد. بد?ن منظور از روش?های توپولوژ?ک? و ?کنوا?? برای بدست آوردن وجود و .جواب?ها?? از خواص? مثل نابرابری شبه?تغ??رات? استفاده خواه?م کرد در ا?ن پا?ان?نامه ما به پ?دا کردن جواب?ها?? از نابرابری تغ??رات? و شبه تغ??رات? به شکل ز?ر م??پرداز?م ?u ? d(j) : ?a(u),v ? u? + ?f(u),v ? u? + j(v) ? j(u) ? 0 ?v ?...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید