نتایج جستجو برای: مدل اقتصادسنجی arima
تعداد نتایج: 123637 فیلتر نتایج به سال:
The U.S. Census Bureau has enhanced the X-12-ARIMA seasonal adjustment program by incorporating an improved automatic regARIMA model (regression model with ARIMA errors) selection procedure. Currently this procedure is available only in test version 0.3 of X-12ARIMA, but it will be released in a future version of the program. It is based on the automatic model selection procedure of TRAMO , an ...
The standardized precipitation index (SPI) was used to quantify the classification of drought in the Guanzhong Plain, China. The autoregressive integrated moving average (ARIMA) models were developed to fit and forecast the SPI series. Most of the selected ARIMA models are seasonal models (SARIMA). The forecast results show that the forecasting power of the ARIMA models increases with the incre...
ARIMA is a popular method to analyze stationary univariate time series data. There are usually three main stages to build an ARIMA model, including model identification, model estimation and model checking, of which model identification is the most crucial stage in building ARIMA models. However there is no method suitable for both ARIMA and SARIMA that can overcome the problem of local optima....
Drought forecasting plays a crucial role in drought mitigation actions. Thus, this research deals with linear stochastic models (autoregressive integrated moving average (ARIMA)) as a suitable tool to forecast drought. Several ARIMA models are developed for drought forecasting using the Standardized Precipitation Evapotranspiration Index (SPEI) in a hyper-arid climate. The results reveal that a...
یکی از مسائل مهم در اقتصاد پیشبینی رشد اقتصادی میباشد. پیشبینی صحیح رشد اقتصادی، اثر مهمی در سیاستگذاری و برنامهریزیهای اقتصادی دولت دارد و میتواند علاوه بر ایجاد زمینه توسعه روشهای جدید پیشبینی، سیاستگذاران را در تصمیمگیری آتی یاری رساند. پیشبینی بر اساس مدلهای چند متغیری اقتصادسنجی با محدودیتهای زیادی همراه است، بنابراین یک روش جایگزین استفاده از مدلهای تک متغیری است. اما اکثر ...
Measurements of high-speed network traffic have shown that traffic data exhibits a high degree of self-similarity. Traditional traffic models such as AR and ARMA are not able to capture this long-range-dependence making them ineffective for the traffic prediction task. In this paper, we apply the fractional ARIMA (F-ARIMA) model to predict one-step-ahead traffic value at different time scales. ...
در این تحقیق به مقایسه کارایی دو روش پیشبینی شبکه عصبی مصنوعی (ANN) و روش سنتی خودرگرسیون میانگین متحرک انباشته (ARIMA) در پیشبینی قیمت سهام در بازار سهام ایران پرداخته شده است. بدین منظور 2 شرکت دارویی البرزدارو و جامدارو انتخاب شده و مدل ARIMA و مدل شبکه عصبی مصنوعی برای هر دو شرکت تخمین زده شد. به منظور تخمین مدل شبکه عصبی مصنوعی، متغیر قیمت سهام به عنوان متغیر وابسته و متغیرهای حجم معا...
توانایی پیش بینی یکی از مهم ترین مهارت های مورد نیاز برنامه ریزان و پژوهشگران علوم منابع طبیعی است. ابهام و پیچیدگی و چندلایه بودن رویدادها ، پیش بینی را به یکی از دشوارترین وظایف فراروی هر محقق تبدیل کرده است بنابراین با درک الگوی زمانی تغییر پذیری اقلیم، می توان با شناختی کامل تر از الگوهای اقلیمی در آینده، نسبت به پیش بینی و مدیریت اقدام نمود. این پژوهش با هدف بررسی قابلیت مدل های سری های زم...
مدل خودرگرسیو میانگین متحرک انباشته (ARIMA) که تحت عنوان روش باکس و جنکینزشناخته میشود، یکی از پرکاربردترین مدلها در پیشبینی سریهای زمانی است. اما پیش فرض اصلی این مدل خطی بودن سریهای زمانی میباشد. از سوی دیگر شبکهی عصبی یک تخمین زنندهی عمومی است که الگوهای غیر خطی را بسیار خوب مدلسازی مینماید. دانستن الگوی دادهها مبنی بر خطی و غیر خطی بودن در واقعیت کمی دشوار است، بنابراین این اید...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید