نتایج جستجو برای: قضیه لیوویل
تعداد نتایج: 3265 فیلتر نتایج به سال:
در این رساله، مسأله اشتورم- لیوویل با دو شرط مرزی y(0)=y’(1)=0 روی بازه (0,1) مورد بررسی قرار می گیرد. معادله اشتورم- لیوویل دارای پارامترحقیقی (مقدار ویژه)، تابع پتانسیل (کراندار و روی بازه (0,1) انتگرالپذیر) و تابع چگالی ( دو بار بطور پیوسته مشتق پذیر) می باشد. با در دست داشتن فرم حاصلضرب نا متناهی مشتق جواب معادله دیفرانسیل، می توان معادلات دوآل مسأله اصلی را مطرح نمود که این دسته از معادل...
در این پایان نامه روش تفاضلات متناهی چبیشف برای حل مسائل حساب تغییرات معمولی ارائه شده است. روش مستقیم شبه اویلر برای حل مسائل حساب تغییرات کسری معرفی شده است. عملگرهایی که تعمیم انتگرال کسری ریمان-لیوویل کلاسیک و مشتقات کسری ریمان-لیوویل و کپوتو هستند, مورد مطالعه قرار گرفته است.
در این رساله، قصد داریم با مطالعه معادلات استورم-لیوویل، به بررسی این نوع معادلات خطی مرتبه دوم بپردازیم. لذا معادله پنسل به صورت y+ig{(} ho^{2}r(x)+i ho q_{1}(x)+q_{0}(x)ig{)}y=0, را در دو رده متفاوت، با نقطه برگردان و ناپیوستگی، در نظر می گیریم. ابتدا جواب های مجانبی این معادله را ارائه می دهیم. سپس جواب دیگری به نام جواب ویل را به دست می آوریم. این جواب باعث ایجاد تابع مهمی به نا...
قضیه بورسوک-اولام و قضیه نقطه ثابت براوئر هر دو از قضیه های شناخته شده در توپولوژی هستند و هر دو غیر ساختاری و وجودی به شمار می آیند. بیشتر کتابهای درسی این قضیه ها را بدون ذکر رابطه آنها با یکدیگر بیان کرده اند. با وجود این ثابت می شود که قضیه بورسوک-اولام، قضیه نقطه ثابت براوئر را نتیجه می دهد. در این مقاله این نتیجه را با روشی مستقیم ثابت می کنیم.
در مکانیک آماری عدم تعادل تحول زمانی یک سیستم توسط جوابهای معادله لیووی تعیین میشود. بدلیل بستگی این معادله به هامیلتونی سیستم، تنها برای چند پتانسیل ساده این معادله تاکنون حل شده است . در اینجا بااستفاده از تقارنهای این معادله، جوابهای آن برای پتانسیل هماهنگ ساده در یک ، دو و سه بعد تعیین میشوند. بدلیل هرمیتی بودن عملگر لیوویل توابع ویژه این عملگر تشکیل مجموعه کامل را میدهند. بنابراین در صورت ...
شارل فرانسوا اشتورم ریاضیدان سوئیسی و ژوزف لیوویل با انتشار مقالاتی در نیمه اول قرن نوزدهم، درباره معادلات دیفرانسیل معمولی خطی مرتبه ی دوم شامل مسائل مقدار مرزی منتشر نمودند که منجر به شاخه جدیدی از ریاضیات بنام نظریه ی طیفی عملگرهای دیفرانسیل شد. تاثیر کار آنان چنان بود که این موضوع به نظریه ی اشتورم-لیوویل معروف شد. یکی از مباحث در نظریه طیفی، محاسبه فرمول اثر می باشد. در این پایان ن...
1- مسأله مقدار مرزی با پارامتر ویژه که به طور خطی در یکی از شرایطشرایط مرزی قرار دارد را در نظر می گیریم را در نظر می گیریم. با استفاده از روشهای کلاسیک نشان می دهیم که مقادیر ویژه این مسأله ساده و حقیقی است. با محاسبه فرمولهای مجانبی جوابهای اساسی توزیع مجانبی مقادیر ویژه و ثابتهای نرمال ساز را بدست می آوریم.قضاییای منحصر بفردی برای جواب مسائل عکس یافتن تابع پتانسیل و ضرایب شرایط مرزی از تاع و...
دو سوال در رابطه با توابع طیفی مربوط به معادلات دیفرانسیل حد نقطه ای مطرح است. معادلات شامل معادله نوع دوم استورم- لیویل و سیستم دو بعدی نوع اول که به معادله دیراک معروف است، می باشد. برای هر معادله شرط و توابع ضریب داده شده تا مشتقات طیفی مستقیماً به شکل سری بر حسب توابع داده شده بدست آید. همچنین برای هر معادله، فرمولهای مربوط به توابع طیفی به ازای مقادیر متفاوت شرایط اولیه نشان داده خواهد شد.
در این پایان نامه جواب های دقیق معادله ی موج سیار ژیبر-شابات و معادلات مربوطه : معادله ی لیوویل و معادله ی داد - بلوچ - میخایلوف و معادله ی سینوس هایپربولیک - جوردون و معادله ی تیزتزیکا - داد - بلوچ با استفاده از روش بسط مطالعه می شود و جواب های سولیتونی و متناوبی برای این معادله ها معمولا به دست می آید.
بدین منظور نخست به گسسته سازی مساله به روش ضمنی کرانک-نیکلسون می پردازیم. سپس به روش جداسازی متغیرها جواب مساله را به صورت حاصلضربی از توابع مجزای معین با متغیرهای مجزا در نظر می گیریم. با جایگذاری جواب مفروض در طرح تفاضلی حاصل از گسسته سازی به یک مساله ی اشتورم-لیوویل گسسته دست می یابیم و سپس با استفاده از خواص مسائل اشتورم-لیوویل گسسته، جواب مساله را به صورت یک سری که جملات آن به صورت مضرب ها...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید