نتایج جستجو برای: فضاهای متریک فازی کامل
تعداد نتایج: 72927 فیلتر نتایج به سال:
در این پایان نامه برای یک گروه لی فشرده g ، وجود یک g- فضای عام در کلاس فضاهای پیرا فشرده ی کامل (مرتب، متریک پذیر و متریک پذیر قابل تفکیک و یا جدا شونده) را اثبات می کنیم. نشان خواهیم داد که یک g- فضای آزاد عام نمی تواند فشرده باشد.
در این پایان نامه به مطالعه و تحقیق درباره فضاهای متریک ژئودزیک پرداخته ، دراین راستا فضاهای متریک ژئودزیک با خاصیت (cat(k را معرفی کرده و به بررسی ویژگی های خاص این فضاها می پردازیم و بویژه درمورد ویژگی های فضاهای cat(1) و cat(0 مطالعه می کنیم ، و نشان می دهیم که این فضاها دارای خواص مشابه به فضای هیلبرت می باشند و آن را به عنوان تعمیم متریک فضاهای هیلبرت می شناسیم . در ادامه نگاشت های چند مق...
نظریه ی معروف فضاهای نرم دار در آنالیز تابعی را با در نظر گرفتن دنباله ای از نرم ها تعدیل می کنیم، که این نرم در شرایط خاصی صدق می کند. پس از معرفی فضاهای چند نرمی، خاصیت هایی از این فضاها را مورد بررسی قرار می دهیم. نرم های چندگانه ی مینیمم و ماکسیمم و نرم های چندگانه ی مشبکه ای، مثال هایی کلیدی از نرم های چندگانه می باشد.همچنین ویژگی عمگرهای کراندار چندگانه بر فضاهای چند نرمی را که همان عملگ...
در این پایان نامه به مطالعه ی فضاهای نیمه متریک و فضاهای متریک تعمیم یافته میپردازیم. سپس اصل انقباض باناخ و قضیه ی کاریستی را در فضاهای نیمه متریک و فضاهای متریک تعمیم یافته اثبات می کنیم.
هدف اصلی از این پایان نامه ارایه تعمیم هایی از اصل اکلند و نیز قضاهای عنصر مینیمال روی فضای متریک و یکنواخت است. تعاریف مقدماتی از تکواره ها و فضاهای یکنواخت اورده شده سپس نتایج هم ارز اصل تغییراتی اکلند گفته میشود سپس در فضای متریک کامل، قضیه عنصر مینیمال برای زیر مجموعه ای از مجموعه های حاصلضربی اورده شده است.
با توجه به اینکه خواص پایه ای فضاهای متریک از اعمال جبری اعداد حقیقی بدست می آید ، این ایده کاملا طبیعی است که در فضاهای متریک به جای اینکه برد تابع متریک در r قرار گیرد در یک فضای برداری ( و یا باناخ ) قرار گیرد . این ایده برای اولین بار توسط هانگ و زانگ تحت عنوان فضاهای متریک مخروطی به طور رسمی مطرح گردید و پس از آن ریاضیدانان زیادی به آن علاقه نشان داده و مباحث مختلف مطرح شده در فضاهای متریک...
بررسی قضایای نقطه ثابت برای توابع انقباضی روی فضاهای متریک کامل مرتب جزئی و کاربرد آن در حل برخی از معادلات دیفرانسیل
در این پایان نامه فضاهای متریک، متریک جزئی، شبه متریک و شبه متریک جزئی مطالعه می شوند. سپس به مطالعه فضاهای متریک تعمیم یافته و متریک جزئی تعمیم یافته پرداخته و مثال ها و قضایایی را در این زمینه اثبات می کنیم. در آخر فضاهای شبه متریک تعمیم یافته و شبه متریک جزئی تعمیم یافته را معرفی کرده و مباحثی را در این زمینه مورد بررسی قرار می دهیم.
تعریف و بررسی خواص فضاهای g-متریک و وجود و یکتایی نقطه ثابت مشترک در فضاهای g-متریک و هم چنین در فضاهای متریک مرتب و وجود و یکتایی نقاط ثابت چهارتایی انقباض های غیر خطی در فضاهای متریک مرتب.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید