نتایج جستجو برای: فرویری طولپا
تعداد نتایج: 38 فیلتر نتایج به سال:
دراین پایان نامه مدل پوانکاره از هندسه ی هذلولوی (نیم صفحه ی بالا) را تحت عمل گروه طولپا ییها درنظر می گیریم؛ به ازای هر زیرگروه گسسته که عمل آن روی نیم صفحه ی بالا به طور سره گسسته باشد، دامنه ی اصلی این عمل را با توپولوژی خارج قسمتی در نظر می گیریم. دسته های خاصی از این طولپاییها اهمیت حسابی و هندسی فراوانی دارند که دراین پایان نامه به دو خانواده ازآنها اشاره می کنیم : زیرگروه های همنهشتی ...
در این رساله ابتدا برای فضاهای فشرده و هاوسدورف x وy به بررس طولپای خطی-حقیقی مانندt از زیر فضایa از c(x) بهc(y می پردازیم و در حالتی کهa یک جبریکنواخت روی x است، توصیفی برایt ارائه می دهیم. سپس نتایج بهتری را برای زمانی که t(a)دارای خواص بیشتری باشد ارائه می کنیم، بعلاوه نتایجی مشابه را برای حالتی که t یک طولپا از فضای تابعیa به روی زیر فضاهای حقیقی ازc(y) باشد که در شرط جداسازی خاصی صدق می کن...
برا ی اولین بار اولام در سال 1940 این مسأله را مطرح کرد که اگر یک نامساوی تابعی را جایگزین معادله تابعی مفروض کنیم آنگاه تحت چه شرایطی جواب های این نامساوی نزدیک به جواب های معادله مفروض است؟هایرز اولین محققی بود که به مسأله اولام پاسخ داد و این مسأله به پایداری اولام – هایرز شهرت یافت. با توجه به این که اهمیت پایداری معادلات تابعی را در شاخه های مختلف ریاضی مشاهده می کنیم، لذا در این پایان نا...
در این پایان نامه نشان داده می شود ضرب تانسوری تصویری دو جبر باناخ دوشکافنده(دوتصویری)، دوشکافنده(دوتصویری) است. با استفاده از این موضوع دوشکافندگی و دوتصویری (m_lambda(a مشخص می شود. در حقیقت برای یک جبر باناخ یکدار a و یک مجموعه اندیس گذار ناتهی،(c،m_lambda(a-دوتصویری (c-دوشکافنده)است اگر و تنها اگر c،a-دوتصویری (c-دوشکافنده) باشد. همچنین نشان داده می شود ell^1-جمع مستقیم جبرهای باناخ a_lambd...
میدان های برداری که شار آنها در هر نقطه طولپایی باشد دارای اهمیت بسیاری است و کاربرد های فراوانی در ریاضیات و فیزیک دارد. چنین میدان های برداری به افتخار ریاضیدان آلمانی، ویلهلم کیلینگ (wilhelm karl joseph killing (1847-1923) )، میدان برداری کیلینگ نامند. میدان های برداری کیلینگ (به ویژه با طول ثابت) در مرجع های زیادی مطالعه شده است، همچنین هندسه خمینه های ریمانی که میدان برداری کیلینگ می پذی...
در چند ساله ی اخیر بررسی نقاط فرین گوی یکه ی برخی فضاها و به خصوص فضاهای چندجمله ای ها مورد توجه قرار گرفته است. اهمیت این بررسی ها در این حقیقت نهفته است که تابع محدب (مانند نرم چندجمله ای) تعریف شده روی یک مجموعه ی بسته، کراندار و محدب، ماکسیمم خود را روی نقاط فرین آن مجموعه اختیار می کند. این روش به رویکرد کراین-میلمن معروف است. مشخص سازی نقاط فرین به خصوص در فضای چندجمله ای ها یک...
فرض کنید x یک مجموعه دلخواه و m)x(فضای تمام توابع حقیقی و کراندارروی باشد m)x(. را یک میانگین روی m)x(مینامند هرگاه مثبت و . = 1 وقتی s یک نیم گروه باشد میانگین روی m)s(را چپ پایا گویند هر گاه برای هر f درm)s(و s در s داشته باشیم وقتی که)f(=) f() f()t(= f)st(مجموعه میانگین های از چپ پایا را با ml)s(نشان میدهیم . هرگاه ml)s(غیر تهی باشد،s را میانگین پذیر چپ گوئیم . نقطه q متعلق به مجموعه محدب از...
برگروه لی$ g=so_{0}(n,1) $، یک متریک ناوردای چپ تعریف می شود که از فرم کیلینگ-کارتان بدست می آید. زیرگروه فشرده همبند بیشین آن عبارت است از $ so(n)=so(n) imeslbrace 1 brace $که با$ k $ نمایش می دهیم.گروه طولپایی های$ g $ عبارت است از egin{equation*} isom_{0}(g)=g imes k, end{equation*} یعنی ضرب چپ توسط عضو های$ g $ و ضرب راست توسط عضو های $ k $. بنابراین، دو عمل برای $ k...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید