نتایج جستجو برای: عدد رنگی بی دور
تعداد نتایج: 71574 فیلتر نتایج به سال:
تعمیم گراف های جهت دار را با مفاهیمی از رنگ آمیزی هارمونیک و رنگ آمیزی کامل در نظر می گیریم. کران بالایی برای عدد رنگی هارمونیک گراف جهت دار ایجاد کرده و نشان می دهیم که تعیین مقدار دقیق عدد رنگی هارمونیک، برای گراف های جهت دار از درجه کراندار (در حقیقت گراف ها با ماکزیمم درجه ورودی و خروجی 2); np-hard است. پیچیدگی در مورد گراف های غیر جهت دار متناظر ناشناخته است. با در نظر گرفتن رنگ آمیزی کا...
یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...
رنگ آمیزی مجازی از گراف g را b-رنگ آمیزی گویند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. به بزرگ ترین عدد طبیعی k که گراف g، یک b-رنگ آمیزی با k رنگ داشته باشد، عدد b-رنگی گراف g گوییم و آن را با(?(g نشان می دهیم. در این پایان نامه به بررسی برخی ویژگی ها و قضیه ها در ارتباط با b-رنگ آمیزی گراف ها می پردازیم. ابتدا ارتباط بین اندازه، کمر و قطر با...
رنگ آمیزی رأسی گراف g را مساوی نامیم، هرگاه اندازه ی کلاسهای رنگی حداکثر یک واحد اختلاف داشته باشند. عدد رنگی مساوی g که با نمایش داده می شود، کوچکترین عدد صحیح m ای است که g، m-رنگ پذیر مساوی است. آستانه ی رنگی مساوی g، که با نمایش می دهیم، کوچکترین m ای است که برای هر n ، g، n-رنگ پذیر مساوی است. در این پایان نامه اثبات می کنیم که اگر g یک گراف مسطح با g(g) و ، یا یک گراف مسطح بیرونی با g(g) ...
عدد رنگ پذیری بازی رنگی همگن یکی از موضوعات جدید و مهم در نظریه بازی و نظریه گراف محسوب می شود.این مساله برای اولین بار در سال 1980 توسط برامز مطرح شد.عدد رنگ پذیری بازی رنگی همگن ترکیبی را به اختصار عدد رنگ پذیری بازی می نامند. در این پایان نامه عدد رنگ پذیری بازی روی بعضی از رده های گراف های مسطح بررسی شده است.
چکیده ی فارسی یک رنگ آمیزی رأسی سره از گراف g را یک bرنگ آمیزی از گراف g می نامند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. هر رنگ آمیزی از گراف g با chi(g) رنگ، یک bرنگ آمیزی از g است. به بزرگ ترین عدد طبیعی k که یک bرنگ آمیزی از گراف g با k رنگ وجود داشته باشد، عدد b رنگی گرافg می گویند و آن را با phi (g) نمایش می دهند. گ...
برای گراف g، تابع c:v(g)→ n را یک رنگ آمیزی مجاز گوییم هرگاه برای هر c(u)= c(v)داشته یاشیم uv ϵ e(g) مجموع رنگی متناظر با رنگ آمیزی c را برابر با ∑u ϵ v(g)c(u) تعریف می کنیم و مجموع رنگی g ، ∑(g) ، را کمترین مقدار ممکن برای مجموع رنگی، در میان همه ی رنگ آمیزی های مجاز g قرار می دهیم. همچنین کمترین تعداد رنگی که برای آن، می توان یک ...
فرض کنیمrحلقه ای جابجایی باشد. گراف ایدآل های پوچ کننده ی یکدیگر برای حلق? rرا با نماد(ag(rنمایش داده و بصورت گرافی با مجموعه رئوس*(a(r تعریف میکنیم.دو رأس متمایز در این گراف مجاورند اگر و تنها اگر حاصلضربشان برابر با صفر باشد.بهبودی و راکعی در [ m.behboodi and z.rakeei, the annihilating-ideal graph of commutative ringii, j. algebra apple. 10(4]در مورد گراف ایدآل های پوچ کنند? یکدیگر حدس زدند د...
هدفت الدراسة الحالية للتعرف على دور القيادة المدرسية في تحسين نتائج الاختبارات الدولية (TIMSS) من وجهة نظر المعلمين والمعلمات بمدينة الطائف، وقد استخدمت المنهج الوصفي التحليلي، واستبانة (35) عبارة، مقسمة إلى خمسة أبعاد، تم تطبيقها عينة (643) معلمي ومعلمات الطائف حصلت متوسط كلي (2.51 5), أي بدرجة قليلة. وعلى مستوى الأبعاد اتضح النتائج أن أبرز لواقع TIMSS)) تمثلت بُعد التنظيم والتنسيق المدرسي، حيث...
رنگ آمیزی وقوعی یکی از انواع رنگ آمیزی گراف ها است. در گراف g مجموعه وقوع ها عبارت از مجموعه ی زوج های مرتب (v.e) است که در آن رأس v بر یال e واقع شده است. دو وقوع (v,e) و (w,f) را مجاور گویند هرگاه w=v یا e=f و یا یال vw برابر e یا f باشد. یک k-رنگ آمیزی وقوعی از گراف g را که با نمایش می دهیم، عبارت است از کوچکترین kایی که g دارای یک k- رنگ آمیزی وقوعی باشد. در این پایان نامه به مطالعه ی رنگ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید