نتایج جستجو برای: روش mlpg
تعداد نتایج: 369685 فیلتر نتایج به سال:
Three different truly Meshless Local Petrov-Galerkin (MLPG) methods are developed for solving 3D elasto-static problems. Using the general MLPG concept, these methods are derived through the local weak forms of the equilibrium equations, by using different test functions, namely, the Heaviside function, the Dirac delta function, and the fundamental solutions. The one with the use of the fundame...
In this paper, the meshless local Petrov-Galerkin (MLPG) method is applied for solving a generalized Black-Scholes equation in financial problems. This equation is a PDE governing the price evolution of a European call or a European put under the Black-Scholes model. The θ-weighted method and MLPG are used for discretizing the governing equation in time variable and option pricing, respectively...
The general Meshless Local Petrov-Galerkin (MLPG) type weak-forms of the displacement & traction boundary integral equations are presented, for solids undergoing small deformations. Using the directly derived non-hyper singular integral equations for displacement gradients, simple and straight-forward derivations of weakly singular traction BIE's for solids undergoing small deformations are als...
The meshless local Petrov-Galerkin (MLPG) method with global radial basis functions (RBF) as trial approximation leads to a full final linear system and a large condition number. This makes MLPG less efficient when the number of data points is increased. We can overcome this drawback if we avoid using more points from the data site than absolutely necessary. In this paper, we equip the MLPG met...
The main objective of this paper is to develop a multiscale method for the static analysis of a nano-system, based on a combination of molecular mechanics and MLPG methods. The tangent-stiffness formulations are given for this multiscale method, as well as a pure molecular mechanics method. This method is also shown to naturally link the continuum local balance equation with molecular mechanics...
The Meshless Local Petrov Galerkin (MLPG) method is used to solve the non-steady two dimensional Navier-Stokes equations. Transient laminar flow field calculations have been carried out in domains wherein certain surfaces have: (i) a sliding motion, (ii) a harmonic motion, (iii) an undulatory movement, and (iv) a contraction-expansion movement. The weak form of the governing equations has been ...
An accurate and yet simple Meshless Local Petrov-Galerkin (MLPG) formulation for analyzing beam problems is presented. In the formulation, simple weight functions are chosen as test functions. The use of these functions shows that the weak form can be integrated with conventional Gaussian integration. The MLPG method was evaluated by applying the formulation to a variety of patch test and thin ...
The Meshless Local Petrov-Galerkin (MLPG) method is one of the recently developed element-free methods. The method is convenient and can produce accurate results with continuous secondary variables, but is more computationally expensive than the finite element method. To overcome this disadvantage, a simple Heaviside test function is chosen. The computational effort is significantly reduced by ...
The truly meshless local Petrov-Galerkin (MLPG) method holds a great promise in solving boundary value problems, using a local symmetric weak form as a natural approach. In the present paper, in the context of MLPG and the meshless interpolation of a moving least squares (MLS) type, a method which uses primary and secondary nodes in the domain and on the global boundary is introduced, in order ...
Discussed is here the multipoint meshless finite difference method (MMFDM) following the original Collatz [2] multipoint concept, and the essential ideas of the meshless FDM [3]. The Collatz approach was based on interpolation, regular meshes and the local formulation of b.v. problems. On the other hand in the MFDM we deal with the moving weighted least squares (MWLS) approximation, arbitrarily...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید