نتایج جستجو برای: روش arima

تعداد نتایج: 372572  

Journal: :Expert Syst. Appl. 2012
Shahrokh Asadi Akbar Tavakoli Seyed Reza Hejazi

A time series forecasting is an active research applied significantly in a variety of economics areas. Over the past three decades an auto-regressive integrated moving average (ARIMA) model, as one of the most important time series models, has been applied in financial markets forecasting. Recent researches in time series forecasting ARIMA models indicate some basic limitations which detract fr...

2013
Aidan Meyler Geoff Kenny Terry Quinn AIDAN MEYLER GEOFF KENNY TERRY QUINN

This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...

2011
Sunil Kumar

Network traffic prediction plays a vital role in the optimal resource allocation and management in computer networks. This paper introduces an ARIMA based model for the real time prediction of VBR video traffic. The methodology presented here can successfully addresses the challenges in traffic prediction such as accuracy in prediction, resource management and utilization. ARIMA application on ...

1997
Marwan Krunz Armand Makowski

Statistical evidence suggests that the autocorrelation function of a compressed-video sequence is better captured by (k) = e ? p k than by (k) = k ? = e ? log k (long-range dependence) or (k) = e ?k (Markovian). A video model with such a correlation structure is introduced based on the so-called M=G=1 input processes. Though not Markovian, the model exhibits short-range dependence. Using the qu...

ژورنال: :فصلنامه علمی-پژوهشی بررسیهای حسابداری وحسابرسی 2013
علی اصغر انواری رستمی عادل آذر محمد نوروزی

پیش‎بینی سود هر سهم و تغییرات آن، یک رویداد اقتصادی است که از دیرباز مورد علاقۀ سرمایه‎گذاران، مدیران، تحلیل­گران مالی و اعتباردهندگان بوده است. در این پژوهش از شبکۀ عصبی gmdh که ابزاری با قابلیت بالا در مسیریابی و تشخیص روندهای غیرخطی پیچیده با تعداد مشاهدات محدود است، برای الگوسازی و پیش‎بینی سود هر سهم از شرکت‎های پذیرفته‎شده در بورس اوراق بهادار تهران استفاده شده است. ابتدا الگویی شامل هشت ...

2007
Viviana Fernandez

In this article, we forecast crude oil and natural gas spot prices at a daily frequency based on two classification techniques: artificial neural networks (ANN) and support vector machines (SVM). As a benchmark, we utilize an autoregressive integrated moving average (ARIMA) specification. We evaluate outof-sample forecast based on encompassing tests and mean-squared prediction error (MSPE). We ...

1998
Marwan Krunz Armand Makowski

Statistical evidence suggests that the autocorrelation function of a compressed-video sequence is better captured by p(k) = e–~fi than by p(k) = k–fi = e–~’og k (long-range dependence) or p(k) = e-~k (Markovian). A video model with such a correlation structure is introduced based on the so-called M/G/ca input processes. Though not Markovian, the model exhibits short-range dependence. Using the ...

Journal: :Chemosphere 2005
C Dueñas M C Fernández S Cañete J Carretero E Liger

Stochastic models that estimate the ground-level ozone concentrations in air at an urban and rural sampling points in South-eastern Spain have been developed. Studies of temporal series of data, spectral analyses of temporal series and ARIMA models have been used. The ARIMA model (1,0,0) x (1,0,1)24 satisfactorily predicts hourly ozone concentrations in the urban area. The ARIMA (2,1,1) x (0,1,...

1998
AIDAN MEYLER GEOFF KENNY TERRY QUINN

This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...

Journal: :Technometrics : a journal of statistics for the physical, chemical, and engineering sciences 2005
A. Ian McLeod E. R. Vingilis

In many intervention analysis applications, time series data may be expensive or otherwise difficult to collect. In this case the power function is helpful, because it can be used to determine the probability that a proposed intervention analysis application will detect a meaningful change. Assuming that an underlying autoregressive integrated moving average (ARIMA) or fractional ARIMA model is...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید