نتایج جستجو برای: رادار دهانه ترکیبی معکوس isar

تعداد نتایج: 38998  

2014
Can Feng Liang Xiao Zhi-Hui Wei

In compressive sensing (CS) based inverse synthetic aperture radar (ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar (ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explor...

2013
CHRISTOPH D SPINNER SEBASTIAN NOE CHRISTIANE SCHWERDTFEGER ANTONIA TODOROVA JOCHEN GAA ROLAND M SCHMID DIRK H BUSCH MICHAEL NEUENHAHN

CHRISTOPH D SPINNER, SEBASTIAN NOE, CHRISTIANE SCHWERDTFEGER, ANTONIA TODOROVA, JOCHEN GAA, ROLAND M SCHMID, DIRK H BUSCH, MICHAEL NEUENHAHN Department of Medicine II, Department of Dermatology and Allergy, Department of Radiology and Interdisciplinary HIV Centre (IZAR) at UNIVERSITY HOSPITAL KLINIKUM RECHTS DER ISAR UNIVERSITY HOSPITAL KLINIKUM RECHTS DER ISAR, Ismaningerstr. 22, 81675 Munich ...

2011
P. Suresh T. Thayaparan K. Venkataramaniah

High-range resolution inverse synthetic aperture radar (ISAR) imaging is a promising tool for non-cooperative target identification and has attracted wide interest within the scientific and military communities. Most of the existing ISAR algorithms are based on the Fourier transform. However, for long coherent integration time or for fast maneuvering targets, simple Fourier processing without c...

2016
Changzheng Ma Boon Poh Ng Jun Jie Feng

Many traditional sparse signal recovery based ISAR imaging methods did not utilize the block scatterers information of targets. Some block Bayesian learning based ISAR imaging algorithms are computational expensive. In this paper, a 2D block 1 0 norms homotopy sparse signal recovery algorithm (the BL1L0 algorithm) is proposed and utilized to form the ISAR image. Compared with Bayesian-based alg...

1999
Markus Wenzel Gertrud Bauer Tobias Nipkow

Isar offers a high-level proof (and theory) language for Isabelle. We give various examples of Isabelle/Isar proof developments, ranging from simple demonstrations of certain language features to a bit more advanced applications. The “real” applications of Isabelle/Isar are found elsewhere.

2004
A. Karakasiliotis P. Frangos

During the last decade, several spectral estimation techniques have been proposed for application to SAR/ISAR imaging. The present study attempts to shed light to a number of parametric spectral estimation methods, employed for ISAR imaging of aircraft targets. We focus on performance comparison with respect to 1-D and 2-D image resolution. Auto-regressive methods and MUSIC algorithm are examin...

Journal: :J. Inf. Sci. Eng. 2007
Tsorng-Lin Chia Shen-Chi Tien Yibin Lu

This paper provides a novel method to recognize aircraft in Inverse Synthetic Aperture Radar (ISAR) images. The method utilizes the conspicuous scatterers located in a two-dimensional ISAR image as the feature points of aircraft to generate geometric invariants and recognize the aircraft. When the ISAR imagery is influenced by noise or target rotation, the proposed method provides an effective ...

2006
Markus Wenzel

Isabelle/Isar is a generic framework for human-readable formal proof documents, based on higher-order natural deduction. The Isar proof language provides general principles that may be instantiated to particular object-logics and applications. We discuss specific Isar language elements that support complex induction patterns of practical importance. Despite the additional bookkeeping required f...

2006
Richard T. Lord Mohammed Y. Abdul Gaffar

Conventional Inverse Synthetic Aperture Radar (ISAR) utilises the rotational motion of a target such as a ship or an aircraft to obtain a 2-D image of the target’s radar cross section (RCS) profile from a coherent radar system. This concept can be extended to obtain a 3-D RCS profile if the target's translational and rotational motion has the required attributes and is known with sufficient acc...

2013
Aniruddha Pal

Inverse Synthetic Aperture Radar (ISAR) is a powerful radar processing technique which is capable of two and three dimensional high resolution image generation of the target. ISAR image is often regarded as an adequate and sufficient measure to discriminate between various targets like missiles, military aircraft and civilian aircrafts. However, if the target has complicated motion such as pitc...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->