نتایج جستجو برای: خمینه های لورنتزی

تعداد نتایج: 478017  

Journal: : 2022

سابقه و هدف: سلامت خاک از مولفه ‏های اصلی در دستیابی به سامانه ‏‏های کشاورزی پایدار بوده که شدت تحت تاثیر عملیات زراعی مانند خاکورزی قرار می ‏گیرد. را توان با استفاده پارامترهای فیزیکی، شیمیایی بیولوژیکی قالب الگوریتم‏ های مشخص کمّی کرد. نتیجه، بررسی وضعیت کیفی باروری مدیریتی مختلف زمین جهت استقرار مناسب برای تولید بهینه نظام‌های امری ضروری می‏ باشد. چارچوب ارزیابی مدیریت SMAF 1 عنوان ابزاری قدر...

ژورنال: :فرهنگ و اندیشه ریاضی 2011
سید محمد باقر کاشانی

رده بندی رویه های بسته، نقطه عطفی در توسعه توپولوژی است چنان که اکنون این مطلب برای بیشتر دانشجویان دوره کارشناسی به عنوان مقدمه ای بر توپولوژی تدریس می شود. رده بندی خمینه های با بعد بیشتر، خیلی مشکل تر است. در حقیقت به علت پیچیدگی گروه بنیادی، رده بندی کاملی مانند آنچه درباره رویه ها وجود دارد، در بعدهای بزرگتر از 3 ممکن نیست. در این مقاله کار قابل توجه گریشا پرلمان را که ممکن است مساله رده ب...

انگیزه های متعددی در گسترش آنالیز هندسی تصادفی نقش داشته است. یکی از آشکارترین آنها این است که محیط زندگی دستگاههای دینامیکی تصادفی همچون دستگاههای دینامیکی عادی، خمینه ها هستند. برای مثال کارهای پرن مربوط است به حرکت براونی روی گروههای دروان. فرآیندهای نفوذ ونیمه مارتینگل ها موجب ظهور اشیاء هندسی مرتبه دومی می شوند که کا را به هندسه های ریمانی و زیرریمانی می کشاند. در واقع ارتباط نزدیکی بین مع...

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه 1390

اخیراً هندسه دانان عصر حاضر زیرخمینه های کشی-ریمان حاصلضرب دو پیچشی در خمینه های موضعاً همدیس کاهلری را مطرح کرده اند و برخی نامساوی درباره اندازه فرم اساسی دوم و خمیدگی متوسط را بدست آورده اند. در این پایان نامه نامساوی دیگری از اندازه فرم اساسی دوم زیرخمینه های کشی-ریمان حاصلضرب دو پیچشی در خمینه موضعاً همدیس کاهلری را بدست می آوریم. پس از آن حالت تساوی از این نامساوی را بررسی می کنیم. در فصل ...

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه 1390

در این پایان نامه خمینه های کنموتسوی ?-ریچی متقارن را مطالعه می کنیم. هر خمینه کنموتسوی ?-متقارن، ?-ریچی متقارن است. نشان می دهیم یک خمینه کنموتسو ?-ریچی متقارن است اگر وتنها اگر انیشتینی باشد. در نهایت نشان می دهیم cr-ابر رویه های ?-متقارن فضا فرم کنموتسو دارای عملگر شکل d-موازی هستند. همچنین نشان می دهیم عملگر شکل cr-ابر رویه های فضا فرم کنموتسو با شرط c ? -1 d-موازی نیستند. بنابراین cr-ابر ر...

مطالعه خمینه ها در هندسه امری طبیعی است و در این زمینه، تشخیص خمینه ها از یکدیگر مساله ای مهم است. در این راستا، ناورداهای مختلف به کار می آیند و کار تشخیص را ساده می سازند. البته به طور کلی این که بتوان فضاهای مشخصی را توسط یک یا دو ناوردا از یکدیگر تمیز داد، امری بسیار خوشبینانه به نظر می رسد، ولی اخیرا این تشخیص صورت گرفته است و نشان داده شده است که برخی مفاهیم در عین پیچیده بودن ظاهرشان، در...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - دانشکده علوم پایه 1391

در این پایان نامه ابتدا به تعریف مفهوم مینیمم های دقیق ضعیف روی خمینه های ریمانی می پردازیم‏.‏ سپس انواع مختلف این مفهوم شامل مینیمم های شارپ ضعیف موضعی‏، مینیمم های دقیق ضعیف کراندار و مینیمم های دقیق ضعیف سرتاسری را برای مسائل محدب روی خمینه های ریمانی از بعد متناهی مشخصه سازی می کنیم. در ادامه با فرض اینکه خمینه ی مورد نظر هادامار باشد‎‏؛ مشخصه سازی های دیگری را نیز به آنچه در حالت کلی خمینه...

ژورنال: :فرهنگ و اندیشه ریاضی 2012
حامد فرهاد پور

این مقاله دو قسمتی که قسمت دوم آن در شماره اینده به چاپ خواهد رسید، کوششی است برای بیان بخشی از تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ- ویتن روی خمینه های سه و چهار بعدی.

در این مقاله مجموعه آثار هانری کارتان مرور می شود. این مجموعه مشتمل بر سه جلد است. در جلد اول، زندگینامه و فهرستی از آثار او را می آوریم. مقالات راجع به توابع تحلیلی از قبیل مقالات مربوط به خمینه های اشتاین و بافه های سازگار جلد دوم را تشکیل می دهند. جلد سوم همه مقالات  بعدی هانری کارتان را جز اندکی موارد استثنایی در بر می گیرد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران 1388

چکیده مفهومی ازیک خمینه شبه اینشتین را m. c. chaki در مقاله [1] معرفی کرده بود. خمینه ی ریمانی غیر تخت که است را یک خمینه ی شبه اینشتین نامیم هرگاه کشان ریچی از نوع آن مخالف صفر باشد و در شرط s(x,y)=ag(x,y)+ba(x)a(y برای بعضی توابع دیفرانسیل پذیرa و b، صدق کند.1-فرمی غیر صفرهست بطوریکه برای میدان برداری متناظر s داریم g(x,s)=a(x) g(s,s)=a(s)=1 1- فرمی a را 1-فرمی وابسته و میدان برداری ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید