نتایج جستجو برای: الیاف uhmwpe
تعداد نتایج: 5521 فیلتر نتایج به سال:
In the present work, novel Ultra-high molecular weight polyethylene (UHMWPE) composites reinforced with 3wt. %, 6wt. %, 9wt. %, 12wt. % and 15wt. % PEEK particles are fabricated by using hot compression moulding technique and mechanical properties are investigated. Experiments were conducted as per ASTM standards to evaluate the properties of tensile, flexural, impact, and microhardness. The re...
Wear debris-induced osteolysis remains the greatest limitation of long-term success for total joint replacements with ultra-high molecular weight polyethylene (UHMWPE) bearings. To address oxidative degradation post-gamma irradiation, manufacturers are investigating the incorporation of antioxidants into PE resins. Similarly, larger molecular weight monomers have been developed to increase cros...
Recently, some novel surface engineering techniques have been developed, which may be used for extending lifetime of artificial joints; however, the full potential will not be realised until the tribological behaviour of surface engineered bio-medical materials has been fully characterised. In the present investigation, a pin-on-disc tribometer has been used to evaluate the tribological respons...
Ultra-high molecular weight polyethylene (UHMWPE) thin film was coated onto Ti6Al4V alloy specimens using dip coating method. Tribological performance of this coating (thickness of 19.6 ± 2.0 μm) was evaluated using 4 mm diameter Si(3)N(4) ball counterface in a ball-on-disk tribometer. Tests were carried out for different normal loads (0.5, 1.0, 2.0 and 4.0 N) and rotational speeds of the disk ...
Introduction: Bearing couples within total ankle arthroplasty (TAA) typically utilize cobalt chromium alloys articulating on ultrahigh molecular weight polyethylene (UHMWPE). Articulation of these surfaces during in vivo loading can generate UHMWPE wear particles, which may then result in osteolysis and component loosening [1]. Osteolysis has been observed following TAA in 15-22% of patient pop...
The classical wear mechanisms abrasion, fatigue, and adhesion are the most frequent causes of surface changes of ultra high molecular weight polyethylene (UHMWPE) in artificial joints. The counterpart material has a strong influence on the wear and friction behavior of artificial joints due to its abrasive properties and adhesive interaction with UHMWPE. The formation of a transfer layer on the...
Ultra-high molecular weight polyethylene (UHMWPE) has been the most commonly used bearing material in total joint arthroplasty. Wear and oxidation fatigue resistance of UHMWPE are regarded as two important mechanical properties to extend the longevity of knee prostheses. Though accelerated in vitro protocols have been developed to test the relative oxidation resistance of various types of UHMWP...
Ultra-high-molecular weight polyethylene (UHMWPE) wear, debris-induced osteolysis is a frequent cause of failure of total hip arthroplasty. Metal-on-metal total hip arthroplasty eliminates the generation of UHMWPE particulate debris. Although the volumetric wear of a metal-on-metal articulation may be lower than a metal-UHMWPE articulation, the number of particles may be higher. Osteolysis can ...
Ultra-high-molecular-weight polyethylene (UHMWPE) components for total joint replacement generate wear particles which cause adverse biological tissue reactions leading to osteolysis and loosening. Sterilisation of UHMWPE components by gamma irradiation in air causes chain scissions which initiate a long-term oxidative process that degrades the chemical and mechanical properties of the polyethy...
Although polyethylene wear particles have been implicated in osteolysis and implant loosening, this study is the first to test whether chemical eluates extracted from ultra-high molecular weight polyethylene (UHMWPE) could also be involved in this process. Eluates were prepared from UHMWPE bar stock and examined for their effects on (3)H-thymidine incorporation by human foreskin fibroblasts gro...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید