نتایج جستجو برای: احاطه گری دلپذیر

تعداد نتایج: 7607  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت دبیر شهید رجایی - دانشکده علوم پایه 1390

مجوعه ی احاطه گر دوبدودر گراف ها اولین بار توسط هینس و اسلتر در سال 1998 به عنوان الگویی برای گرفتن پشتیبان وحفاظت از اهداف محرمانه ارائه شد. جان مک کوی ومیچل هنینگ درسال2009 دو مفهوم مکان یابی و مجموعه ی احاطه گر دوبدو را ترکیب کردند و سه تعریف جدید مجموعه های احاطه گر دوبدو مکان یابی ومجموعه های احاطه گر دوبدو مشتق پذیر و مجموعه های احاطه گر دوبدو متریک را ارائه کردند. در این پایان نامه، فصل...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده ریاضی 1391

فرض کنید g یک گروه و a مجموعه مولدی برای g باشد به طوری که a شامل عضو همانی g نبوده و نسبت به وارون بسته باشد، گراف کیلی روی گروه g نسبت بهa گرافی است با مجموعه رئوس g و مجموعه یال های{ e={(x , xa)| x ? g a ? a آن را با( cay (g , a نشان می دهند. در حالت خاص اگر g گروه جمعی zn به پیمانه n باشد، گراف کیلی را یک گراف دوری می نامند وآن را با( cir (n , a نشان می دهند. یک زیر مجموعه از مجموعه رئوس گر...

برچسب گذاری یک گراف یکی از شاخه های تحقیقاتی فعال در نظریه گراف است. اولین بار ایده برچسب گذاری گراف ها با برچسب گذاری دلپذیر مطرح شد اما به سرعت توسط محققین انواع متنوعی از برچسب گذاری ها برای یک گراف تعریف گردید. علیرغم گستردگی انواع برچسب گذاری گرافها، برچسب گذاری دلپذیر همچنان یکی از جذاب ترین شاخه های این رشته تحقیقاتی است. در این مقاله، سعی شده است به بررسی کاربردهایی که گرافهای دلپذیر در...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تفرش - دانشکده ریاضی 1389

بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1393

بازی احاطه ای بر روی گراف های ساده ی بدون جهت توسط دو بازیکن $mathcal d$ و $mathcal a$ انجام می شود. هر یک از این بازیکنان در نوبت بازی خود یک یال بدون جهت را انتخاب و آن را جهت گذاری می کنند. بازی را بازیکن $mathcal d$ شروع می کند و در جهت گذاری یال ها به دنبال کاهش عدد احاطه ای گراف جهت داری است که در انتهای بازی به دست خواهد آمد، در حالی که بازیکن $mathcal a$ به دنبال افزایش این عد...

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه 1388

فرض کنید یک گراف همبند باشد. برای رئوس متمایز و ، فاصله فرعی ، طول بلندترین مسیر بین و در است. یک مسیر به طول را یک مسیر فرعی می نامند. مجموعه از رئوس را یک مجموعه فرعی می نامند هرگاه هر رأس از در یک مسیر فرعی برای برخی اعضای مانند و قرار گیرد. مینیمم اندازه یک مجموعه فرعی را عدد فرعی نامیده و با نماد نشان می دهند. مجموعه فرعی که هیچ زیرمجموعه سره آن یک مجموعه فرعی نباشد را مجموعه فرعی مینیمال ...

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم 1387

مجموعه s را یک مجموعه احاطه گر پویا گوییم هر گاه به ازای هر عضو s حداقل یک از دو شرط زیر برقرار باشد. 1) {s - {v یک مجموعه احاطه گر باشد. 2) راسی مانند u در همسایگی v در خارج از s وجود داشته باشد که اگر v را با u در s جابجا کنیم آنگاه s یک احاطه گر باشد. یک مجموعه احاطه گر پویای g را می نیمال گویند هر گاه هیچ زیر مجموعه واقعی آن احاطه گر پویا نباشد. منییم تعداد یالهایی که با زیر تقسیم آنها ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده ریاضی 1394

در این پایان نامه ابر دلپذیر یالی بودن گرافهای دو بخشی کامل، مسیرها، دورها و درختهای با قطر 4 مورد بررسی قرار میگیرد.

ژورنال: :پژوهش های نوین در ریاضی (علوم پایه سابق) 0
h. abdollahzadeh ahangar department of basic science babol noshirvani university of technology babol,iran. z. ghandali department of basic science babol noshirvani university of technology babol, iran

تابع  یک تابع احاطه گر 2-رنگین کمانی  برای گراف  نامیده می­شود هرگاه برای هر راس  با شرط  داشته باشیم . وزن یک 2rdf  برابر است با . عدد احاطه گر 2-رنگین کمانی گراف  را که با نماد  نمایش می­دهیم کمترین وزن یک 2rdf در گراف  است. تابع احاطه­گر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف  یک تابع احاطه­گر 2-رنگین کمانی  می­باشد به­طوری که مجموعه­ی  یک مجموعه­ی احاطه­گر برای گراف  نباشد. وزن یک m2rdf  ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده ریاضی 1392

در این پایان نامه به بررسی نامساوی های نوردهاوس-گادووم بر روی دو تعریف اساسی احاطه کنندگی و احاطه کنندگی کلی پرداخته شده است. در گراف g یک زیرمجموعه از مجموعه رأس های گراف g را یک مجموعه احاطه کننده می گوییم، هرگاه هر رأس v ?v(g)-s با حداقل یکی از رئوس s مجاور باشد، و مجموعه ی s?v(g) را مجموعه احاطه کننده کلی می گوییم، هرگاه هر رأس v ?v(g) با حداقل یکی از رئوس s مجاور باشد.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید