نتایج جستجو برای: احاطه گرمکانی
تعداد نتایج: 1160 فیلتر نتایج به سال:
ما ارتباط بین مسئل? افراز خوش? سالم و مسئل? احاطه کننده رنگی را مطالعه می کنیم.
مجموعه s از رئوس گراف g را یک مجموعه احاطه گر نامند هرگاه هر رأس v ? v(g) – s با حداقل یک رأس از s مجاور باشد. در گراف جهت دار d مجموعه s از رئوس را یک مجموعه احاطه گر نامند هرگاه هر رأس v ? v(g) – s در همسایگی خروجی حداقل یکی از رئوس s قرار داشته باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر را عدد احاطه ای نامیده و با ?(g) نشان میدهند. مقدار عدد احاطه ای یک گراف و گراف جهت دار می تواند با اضافه...
فرض کنید g یک گراف ساده و غیر جهت دار با مجموعه رئوس v(g) باشد. مجموعه s?v(g) را یک مجموعه احاطه گر می نامیم، هرگاه هر راس در مجموعه v-s با بعضی رئوس s مجاور باشد. مجموعه s را یک مجموعه احاطه گر کلی می نامیم، هرگاه هر راس از مجموعه رئوس v(g) با بعضی رئوس s مجاور باشد و g[s]راس تنها نداشته باشد . عدد احاطه گر کلی برابر است با کمترین اندازه یک مجموعه احاطه گر کلی و با ?_t (g) نمایش می دهیم. گراف ...
فرض g گرافی با مجموعه رئوس v و مجموعه یال های e باشد، زیر مجموعه d از رئوس g یک مجموعه احاطه گر همبند مضاعف برای g است، هرگاه d یک مجموعه احاطه گر بوده و زیر گراف های القایی g[d] و g[v-d] همبند باشند.می نیمم اندازه یک مجموعه احاطه گر همبند مضاعف را عدد احاطه ای همبند مضاعف می نامیم.
امروزه نظریه گراف نسبت به زمان پیدایش خویش بسیار پیشتر رفته است به طوری که در دنیای واقعی کاربردی بودن آن برکسی پوشیده نیست؛ به خصوص عجین شدن آن با علم کامپیوتر باعث شده که این علم در زمره پرکاربردترین آن ها باشد. نقش گراف علاوه بر ریاضیات کاربردی و محض در بسیاری از علوم مانند فیزیک، شیمی، مهندسی، کامپیوتر، سیاست، اقتصاد و غیره بسیار پررنگ است. بیان کاربردهای بی شمار گراف ها...
فرض کنید k یک عدد صحیح مثبت و g یک گراف ساده با مجموعه رئوس v(g) باشد. تابع k-احاطه کننده رومی روی گراف g تابعی است مانند f?v(g)?{0,1,2} به طوریکه برای هر راس u ، f(u)=0 آنـگاه حـداقل k راس v_1,v_(2 ),…,v_(k ) وجـود دارنـد که با u مجـاورنـد و f(v_(i ) )=2 بـرای هـر i=1,….,k. وزن یک تابع k-احاطه کننده رومی برابر است با مقدار ?_(u?v(g))??f(u)? و کمترین وزنی که تابع k-احاطه کننده رومی در یک گراف م...
فرض کنید g گراقی از مرتبه n و فاقد رأس تنها باشد. زیر مجموعه s از رئوس گراف g را یک مجموعه ?-احاطه گر نامیم هرگاه برای هر رأس خارج از مجموعه s، داشته باشیم |n(v) ? s|?? |n(v)|.حال اگراین مسأله را برای تمام رئوس گرافل تعمیم دهیم مسأله جدیدی به نام ?-احاطه گری کلی بوجود می آید.همچنین در فصل های بعد این پایان نامه تأثیر حذف یک رأس و افزایش و کاهش یک یال را بر عدد ?-احاطه گری بررسی می نماییم و مفهو...
در این پایان نامه کاربردهایی از روش های ماتریسی در نظریه تحلیلی چندجمله ای ها ارائه می گردد. در واقع نشان داده می شود که با استفاده از آنالیز ماتریسی، می توان اثبات های جدیدی برای برخی نتایج کلاسیک روی ریشه چندجمله ای ها بدست آورد. استفاده از احاطه سازی لگاریتمی در نظریه تحلیلی چندجمله ای ها مورد مطالعه قرار گرفته و سپس با استفاده از روش های ماتریسی و نظریه دنباله های افزایش دهنده، یک نتیجه احا...
عدد احاطه گر یکی از پارامترهای مهم در نظریه گراف است. زیر مجموعه ای d از مجموعه رئوس گراف (g=(v,e را یک مجموعه احاطه گر برای گراف گویند هرگاه هر رأس خارج d حداقل یک همسایه داخل آن داشته باشد. مقدار کمینه اندازه چنین مجموعه هایی عدد احاطه گر نامیده میشود. در بررسی این پارامتر یافتن کران های بالا و پایین اهمیت و کاربرد دارد. انواع عدد احاطه گر با قرار دادن شرایطی روی d تعریف میشود. در این پایان ن...
...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید