نتایج جستجو برای: γ fe2o3 nanoparticles 11 diacetate
تعداد نتایج: 567594 فیلتر نتایج به سال:
Development of highly cost-effective, highly operation-convenient and highly efficient natural polymer-based adsorbents for their biodegradability and biocompatibility, and supply of safe drinking water are the most threatening problems in water treatment field. To tackle the challenges, a new kind of efficient recyclable magnetic chitosan/cellulose hybrid microspheres was prepared by sol-gel m...
BACKGROUND Fluoride contamination of groundwater, both anthropogenic and natural, is a major problem worldwide and hence its removal attracted much attention to have clean aquatic systems. In the present work, removal of fluoride ions from drinking water tested using synthesized γ-Fe2O3 nanoparticles. METHODS Nanoparticles were synthesized in co-precipitation method. The prepared particles we...
An intensive multi-disciplinary research effort is underway at Wayne State University to synthesize and characterize magnetic nanoparticles in a biocompatible matrix for biomedical applications. The particular system being studied consists of 3–10 nm γ-Fe2O3 nanoparticles in an alginate matrix, which is being studied for applications in targeted drug delivery, as a magnetic-resonance imaging (M...
Synthesis of core–shell nanostructures with magnetic core and zeolitic shell is an ongoing challenge. Herein, a strategy presented for preparation γ-Fe2O3@mesoporous silica (mSiO2) nanoparticles containing ultrasmall domains silicalite-1 in the (γ-Fe2O3@mSiO2/silicalite-1). The consists solid-state reorganization precursor amorphous mSiO2 into using tetrapropylammonium hydroxide (TPAOH) as orga...
Iron(III) oxide shows a polymorphism, characteristic of existence of phases with the same chemical composition but distinct crystal structures and, hence, physical properties. Four crystalline phases of iron(III) oxide have previously been identified: α-Fe2O3 (hematite), β-Fe2O3, γ-Fe2O3 (maghemite), and ε-Fe2O3. All four iron(III) oxide phases easily undergo various phase transformations in re...
We examined the reduction of different size hematite (a-Fe2O3) nanoparticles (average diameter of 11, 12, 30, 43, and 99 nm) by the dissimilatory iron reducing bacteria (DIRB), Shewanella oneidensis MR-1, to determine how S. oneidensis MR-1 may utilize these environmentally relevant solid-phase electron acceptors. The surface-area-normalized-bacterial Fe(III) reduction rate for the larger nanop...
we have used tungestophosphoric acid to catalyze oxidative amidation reaction from benzyl alcohols and methylarens with hydrochloride salts of amines. to achieve this purpose, modified magnetic nanoparticles (γ-fe2o3@sio2@h3pw12o40) were applied as catalyst and tbhp as external oxidant. after optimizing, different derivates of benzamides were synthesized in good yields. also, the result of two ...
Neocuproine has been covalently bound to silica-coated maghemite (γ-Fe2O3) magnetic nanoparticles (MNPs) by a phenyl ether linkage. The resulting MNPs are able to remove Cu(II) from 12 ppm aqueous solution with an extraction efficiency of up to 99% at pH 2.
The alternating magnetic field was discovered to be capable of inducing the fibrous aggregation of magnetic nanoparticles. However, this anisotropic aggregation may be unfavorable for practical applications. Here, we reported that the adsorption of BSA (bovine serum albumin) on the surfaces of magnetic nanoparticles can effectively make the fibrous aggregation of γ-Fe2O3 nanoparticles turn into...
We present a microfluidic platform that allows undergoing different chemical operations in a nanoliter droplet starting from the colloidal suspension of magnetic iron oxide (γ-Fe2O3) nanoparticles "NPs" (ferrofluid). These operations include: mixing, flocculation, magnetic decantation, colloidal redispersion, washing, surface functionalization, heating and colloidal assembly. To prove the platf...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید