نتایج جستجو برای: zero divisor graph ideal
تعداد نتایج: 424665 فیلتر نتایج به سال:
There is a natural graph associated to the zero-divisors of a commutative semiring with non-zero identity. In this article we essentially study zero-divisor graphs with respect to primal and non-primal ideals of a commutative semiring R and investigate the interplay between the semiring-theoretic properties of R and the graph-theoretic properties of ΓI(R) for some ideal I of R. We also show tha...
let $r$ be a commutative ring with identity and $m$ an $r$-module. in this paper, we associate a graph to $m$, say ${gamma}({}_{r}m)$, such that when $m=r$, ${gamma}({}_{r}m)$ coincide with the zero-divisor graph of $r$. many well-known results by d.f. anderson and p.s. livingston have been generalized for ${gamma}({}_{r}m)$. we show that ${gamma}({}_{r}m)$ is connected with ${diam}({gamma}({}_...
Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...
let $r$ be a commutative ring with zero-divisor set $z(r)$. the total graph of $r$, denoted by$t(gamma(r))$, is the simple (undirected) graph with vertex set $r$ where two distinct vertices areadjacent if their sum lies in $z(r)$.this work considers minimum zero-sum $k$-flows for $t(gamma(r))$.both for $vert rvert$ even and the case when $vert rvert$ is odd and $z(g)$ is an ideal of $r$it is s...
in this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. weobserve that over a commutative ring $r$, $bbb{ag}_*(_rm)$ isconnected and diam$bbb{ag}_*(_rm)leq 3$. moreover, if $bbb{ag}_*(_rm)$ contains a cycle, then $mbox{gr}bbb{ag}_*(_rm)leq 4$. also for an $r$-module $m$ with$bbb{a}_*(m)neq s(m)setminus {0}$, $...
let $r$ be a commutative ring with identity. an ideal $i$ of a ring $r$is called an annihilating ideal if there exists $rin rsetminus {0}$ such that $ir=(0)$ and an ideal $i$ of$r$ is called an essential ideal if $i$ has non-zero intersectionwith every other non-zero ideal of $r$. thesum-annihilating essential ideal graph of $r$, denoted by $mathcal{ae}_r$, isa graph whose vertex set is the set...
let $i$ be a proper ideal of a commutative semiring $r$ and let $p(i)$ be the set of all elements of $r$ that are not prime to $i$. in this paper, we investigate the total graph of $r$ with respect to $i$, denoted by $t(gamma_{i} (r))$. it is the (undirected) graph with elements of $r$ as vertices, and for distinct $x, y in r$, the vertices $x$ and $y$ are adjacent if and only if $x + y in p(i)...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید