It is shown that if q is a prime power then there are Williamson-type matrices of order (i) 1/2q2(q + 1) when q ≡ 1 (mod 4), (ii)1/4q2(q + 1) when q ≡ 3 (mod 4) and there are Williamson-type matrices of order l/4(q + 1). This gives Williamson-type matrices for the new orders 363, 1183, 1805, 2601, 3174, 5103. The construction can be combined with known results on orthogonal designs to give an H...