نتایج جستجو برای: wide band gap semiconductor
تعداد نتایج: 657012 فیلتر نتایج به سال:
Impurity-based p-type doping in wide-band-gap semiconductors is inefficient at room temperature for applications such as lasers because the positive-charge carriers (holes) have a large thermal activation energy. We demonstrate high-efficiency p-type doping by ionizing acceptor dopants using the built-in electronic polarization in bulk uniaxial semiconductor crystals. Because the mobile hole ga...
Recent studies of wide band-gap diamond field emission devices have realized superior performance and lifetime. However, theoretical studies using standard Fowler-Nordheim (FN) theory do not fully capture the physics of diamond semiconductor emitters as a result of the fitting parameters inherent to the FN approximation. The following research computationally models wide band-gap field emission...
Heterostructures of dissimilar 2D materials are potential building blocks for novel materials and may enable the formation of new (photo)electronic device architectures. Previous work mainly focused on supporting graphene on insulating wide-band gap materials, such as hex-BN and mica. Here we investigate the interface between zero-band gap semiconductor graphene and band-gap semiconductor MoS2 ...
Colloidal trivalent gallium (Ga) doped zinc oxide (ZnO) hexagonal nanocrystals have been prepared to introduce more carrier concentration into the wide band gap of ZnO. The dopant (Ga) modifies the morphology and size of ZnO nanocrystals. Low content of Ga enhances the optical band gap of ZnO due to excess carrier concentration in the conduction band of ZnO. The interaction among free carriers ...
Zinc oxide (ZnO) is a promising wide band gap semiconductor. It has a direct energy band gap, Eg of 3.3eV at room temperature. ZnO can be alloyed with CdO and MgO to form the ternaries CdxZn1-xO and MgxZn1-xO, extending the direct energy band from 2.8eV to 4.0eV. Through proper doping, it also can be made transparent and conductive, piezoelectric, or ferromagnetic. ZnO based single crystal nano...
<sec>GaN materials are widely used in optoelectronic devices, high-power devices and high-frequency microwave because of their excellent characteristics, such as wide frequency band, high breakdown electric field, thermal conductivity, direct band gap. Owing to the large lattice mismatch brought by heterogeneous epitaxy GaN material, epitaxial layer will produce a great many dislocations ...
The extract of Jambol o (java plum), Eugenia jambolana Lam, was used as a natural sensitizer of a wide band-gap semiconductor (TiO2) in photoelectrochemical solar cells. The natural dye, adsorbed onto the semiconductor surface, absorbs visible light and promotes electron transfer across the dye/semiconductor interface. Photogenerated current and voltage as high as 2.3 mA and 711 mV, respectivel...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید