نتایج جستجو برای: voting algorithm
تعداد نتایج: 766620 فیلتر نتایج به سال:
Tensor voting is an efficient algorithm for perceptual grouping and feature extraction, particularly for contour extraction. In this paper two studies on tensor voting are presented. First the use of iterations is investigated, and second, a new method for integrating curvature information is evaluated. In opposition to other grouping methods, tensor voting claims the advantage to be non-iterat...
This paper compares the performance of Boosting and nonBoosting training algorithms in large vocabulary continuous speech recognition (LVCSR) using ensembles of acoustic models. Both algorithms demonstrated significant word error rate reduction on the CMU Communicator corpus. However, both algorithms produced comparable improvements, even though one would expect that the Boosting algorithm, whi...
This paper introduces a novel Support Vector Machines (SVMs) based voting algorithm for reranking, which provides a way to solve the sequential models indirectly. We have presented a risk formulation under the PAC framework for this voting algorithm. We have applied this algorithm to the parse reranking problem, and achieved labeled recall and precision of 89.4%/89.8% on WSJ section 23 of Penn ...
People are regularly asked to report on their likelihoods of carrying out consequential future behaviors, including complying with medical advice, completing educational assignments, and voting in upcoming elections. Despite these stated self-predictions being notoriously unreliable, they are used to inform many strategic decisions. We report two studies examining stated self-prediction about w...
We study the power index voting game design problem for weighted voting games: the problem of finding a weighted voting game in which the power of the players is as close as possible to a certain target distribution. Our goal is to find algorithms that solve this problem exactly. Thereto, we consider various subclasses of simple games, and their associated representation methods. We survey algo...
The paper introduces Voting EM, an adaptive online learning algorithm of Bayesian network parameters. Voting EM is an extension of the EM( ) algorithm suggested by [1]. We show convergence properties of the Voting EM that uses a constant learning rate. We use the convergence properties to formulate an error driven scheme for adapting the learning rate. The resultant algorithm converges with the...
In many circumstances where multiple agents need to make a joint decision, voting is used to aggregate the agents’ preferences. Each agent’s vote carries a weight, and if the sum of the weights of the agents in favor of some outcome is larger than or equal to a given quota, then this outcome is decided upon. The distribution of weights leads to a certain distribution of power. Several ‘power in...
We consider settings in which voters vote in sequence, each voter knows the votes of the earlier voters and the preferences of the later voters, and voters are strategic. This can be modeled as an extensive-form game of perfect information, which we call a Stackelberg voting game. We first propose a dynamic-programming algorithm for finding the backward-induction outcome for any Stackelberg vot...
We consider settings in which voters vote in sequence, each voter knows the votes of the earlier voters and the preferences of the later voters, and voters are strategic. This can be modeled as an extensive-form game of perfect information, which we call a Stackelberg voting game. We first propose a dynamic-programming algorithm for finding the backward-induction outcome for any Stackelberg vot...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید